Измерение мэд гамма-излучения. Дозиметрия для "чайников". Дозы и последствия их превышения Мощность экспозиционной дозы гамма излучение

Режим измерения МЭД гамма-излучения включается приоритетно с момента включения дозиметра. Признаками этого режима есть высвечивание символа “µSv/h” на индикаторе и кратковременные звуковые сигналы, которыми сопровождаются зарегистрированные гамма-кванты. При этом на индикаторе уже на первых секундах будут высвечиваться результаты измерений, которые сразу дают возможность оперативной оценки уровня излучения. Поскольку в дозиметре предусмотрено постоянное усреднение результатов измерений, то с каждым следующим возобновлением значения на индикаторе происходит процесс его уточнения. Таким образом, приблизительно через минуту после начала измерений на индикаторе можно получить результат с точностью в границах паспортной погрешности дозиметра. Время, необходимое для получения достоверного результата, зависит от интенсивности излучения и не превышает 70 с для уровня естественного фона. На протяжении этого времени цифровые разряды индикатора будут мигать.

Для измерения МЭД гамма-излучения необходимо дозиметр ориентировать метрологической меткой “+” по направлению к обследуемому объекту.

Примечание . Для оперативной оценки уровня излучения процесс усреднения информации можно останавливать принудительно. Для этого, изменив объект обследования, необходимо кратковременно нажать кнопку ПОРОГ. В результате, приблизительную оценку уровня гамма-фона каждого нового объекта можно будет сделать на протяжении 10 с.

Результатом измерений МЭД гамма-излучения следует считать среднее арифметическое пяти последних измерений через 10 с после начала измерения или каждое значение, полученное после прекращения мигания индикатора, при условии неизменного расположения дозиметра по отношению к обследуемому объекту. Единицы измерения выражены в мкЗв·ч 1 .

Измерение МЭД гамма-излучения и сравнение результатов с запрограммированным пороговым уровнем звуковой сигнализации происходит постоянно и независимо от выбранного режима индикации и работы с момента включения дозиметра.

4.2.Индикация измеренного значения ЭД гамма- излучения

Для включения режима индикации измеренного значения ЭД гамма-излучения необходимо кратковременно нажать кнопку РЕЖИМ. Этот режим является следующим после режима измерения МЭД гамма-излучения (который включается приоритетно с момента включения дозиметра). Признаком этого режима будет высвечивание символа «mSv» на индикаторе. Единицы измерения ЭД гамма-излучения выражены в мЗв. В начале работы дозиметра запятая на индикаторе будет находиться после первого слева разряда. По мере возрастания значения ЭД гамма-излучения запятая будет автоматически смещаться вправо, вплоть до полного заполнения шкалы ЭД дозиметра.



Примечание. В случае имеющегося нормального (около 0,1 мкЗв·ч -1) фонового гамма-излучения изменение на единицу младшего разряда шкалы ЭД состоится приблизительно через 10 часов и на индикаторе высветится результат «0,001 mSv», что соответствует 1,0 мкЗв.

4.3. Оценка поверхностной загрязненности бета- радионуклидами

Для оценки поверхностной загрязненности бета-радионуклидами необходимо дозиметр включить в режим измерения МЭД гамма-излучения. Дозиметр сориентировать окном, которое находится напротив детектора (далее по тексту – окно детектора), параллельно обследуемой поверхности и расположить на минимальном расстоянии от нее.

Для оценки поверхностной загрязненности бета-радионуклидами необходимо осуществлять два измерения: первое - с открытым окном детектора; второе - с закрытым с помощью крышки-фильтра окном детектора. Перед началом каждого измерения необходимо кратковременно нажать кнопку «ПОРОГ». Результатом измерений при этом будет разность между первым и вторым измерениями. Наличие разности значений между первым и вторым измерениями, выходящей за пределы погрешности измерений, будет свидетельствовать о поверхностной загрязненности обследуемого объекта бета-радионуклидами.

Результатом измерений для оценки поверхностной загрязненности бета-радионуклидами следует считать среднее арифметическое пяти измерений через 10 с после начала измерения или каждое значение, полученное после прекращения мигания индикатора. Результат будет представлен в условных единицах мкЗв·ч -1 .

5. Задание:



1. Используя дозиметр-радиометр МКС-05 «ТЕРРА» в соответствии с п.п. 4.1 и 4.2 выполнить измерения МЭД и ЭД гамма-излучения в учебной аудитории.

2. Выполнить оценку поверхностной загрязненности бета-радионуклидами используя методику, изложенную в п.п. 4.3. (в качестве поверхности загрязненной бета-радионуклидами можно воспользоваться куском гранита, шлака и т.д.).

3. По результатам измерений сделать соответствующие выводы о радиационном фоне в учебной аудитории.

Контрольные вопросы:

1. Какие виды излучений называются радиоактивными.

2. Физические особенности взаимодействия α-излучения с веществом.

3. Поясните, что представляет из себя поток β-излучения.

4. Поясните, что представляет из себя поток γ-излучения.

5. Особенности взаимодействия с веществом β и γ-излучения.

6. Объясните принцип работы дозиметра-радиометр МКС-05 «ТЕРРА».

7. Поясните основное назначение и принцип действия счетчика Гейгера-Мюллера.

8. Поясните назначение основных узлов дозиметра-радиометра.

9. В чем отличие режима измерения МЭД от ЭД.

Мощность экспозиционной дозы, рассчитанной по гамма-излучению - устаревший критерий дозы. Интенсивность потока ионов (собственно, физическая суть радиации) теперь считают иначе. По современным критериям применяют мощность эквивалентной дозы. Ее основа - замер биологических последствий ионизирующего излучения на организм за темпоральный промежуток (час, сутки и т. д.). МЭД считается более адекватным нуждам медицины, нежели более абстрактный замер «гаммы», не учитывающий многих параметров. Современные же требования экологии и радиобезопасности по работе в местах с повышенным излучением намного строже и должны быть направленными на отслеживание и ликвидацию возможных последствий превышения значений ионизирующего излучения.

Старые методики замеров до 1990 года

Существенным отличием от МЭД, основой «чернобыльских» нормативов, была экспозиционная доза, считавшая поток фотонов, ионизирующих воздух. Физиками этот процесс отлично исчисляется, однако сведения о мощности дозы не могли точно покрыть требования по медицинским анализам.

В формуле дозу рассчитывали в качестве электрозаряда ионов, которые образуются тормозящим излучением в сухом воздухе при делении на массу объема воздуха. В физических величинах это ампер в секунду, т. е. обоснование количества энергии, поглощенной объектом под потоком радиации.

В качестве же хрестоматийной системной единицы используется рентген в секунду. Рентген - устаревшая мера излучения, в наше время используют зиверты. Причина, почему именно с 1990 года совершена реформа - выход новых комплексных методичек по дозиметрам. Тем самым полностью обновлен модельный ряд детекторов и внедрены более современные стандарты радиобезопасности. На основе кумулятивного опыта радиационных аварий были установлены фундаментальные изъяны использования рентгенов в час в качестве единиц измерения:

  • Слишком грубые замеры. «Формально» ионизирующий поток по формуле просчитан корректно. Однако недостаточно раскрыты второстепенные физические явления, показывающие изменения в итоговых масштабах облучения.
  • Нет соотношения с воздействием в биологическом плане: экспозиционная доза в разных условиях плотности ионизации имеет весьма вариативные последствия.
  • Старым методом было нереально проверить накопленное облучение за определенный период, также упускались многие биологические параметры.

Каковы современные методы, чтобы проверить мощность дозы гамма излучения?

Современная оценка ионизации базируется на измерении мощности дозы гамма излучения в виде эквивалентной дозы за фиксированный темпоральный промежуток. Именно так исследователи оценивают долгосрочные биологические изменения от ионизирующего излучения. Суммарная мощность складывается из суммы бета-фона, гамма-излучения, рентгеновских лучей, соответственно, принятым поправочным коэффициентам.

Измеряется мощность зивертами в единицу времени. Один зиверт - гигантская доза (например, шесть зивертов - это летальная лучевая болезнь), поэтому для расчета практики постоянного и временного облучения практикуют миллизиверты.

Однако даже новейший подход не справляется со всеми факторами, касающимися человеческого метаболизма под ионизирующим облучением. Ткани разной плотности и химического состава, кости, жидкости внутри организма по-разному радиопроницаемы и выводят нуклиды также специфически. Радиобиология сегодня учитывает как направление пучка лучей, так и расположение их внешнего источника, возрастные показатели, метеорологию и так далее.

Занимается дифференцированной дозиметрией и тем самым помогает определять мощность дозы согласно современным рекомендациям. В компании представлены наиболее чувствительные измерительные приборы, а также опытный персонал, занимающийся постановкой точных диагнозов. Заказать услуги инженеров «Радэк» можно по номеру телефона, указанному на сайте.

Все документы, представленные в каталоге, не являются их официальным изданием и предназначены исключительно для ознакомительных целей. Электронные копии этих документов могут распространяться без всяких ограничений. Вы можете размещать информацию с этого сайта на любом другом сайте.

Государственная система санитарно-эпидемиологического нормирования Российской Федерации

2.6.1. Ионизирующее излучение, радиационная безопасность

Проведение радиационно-гигиенического обследования жилых
и общественных зданий

Методические указания

МУ 2.6.1.715-98

Санкт-Петербург

1998

1. Методические указания разработаны Федеральным радиологическим центром Санкт-Петербургского Научно-исследовательского института радиационной гигиены Минздрава РФ (Крисюк Э.М.. Терентьев М.В., Стамат И.П. и Барковский А.Н.) и Департаментом Госсанэпиднадзора Минздрава Российской Федерации (Иванов СИ.. Перминова Г.С. и Соломонова Е.П.)

2. Утверждены и введены в действие Главным Государственным санитарным врачом Российской Федерации 24 августа 1998 года

3. Введены впервые

в которой приняты обозначения:

t 0,95 - значение коэффициента Стьюдента для доверительной вероятности Р = 0,95 (принимают по Приложению 5 в зависимости от числа повторных измерений N в данной точке);

s i - среднеквадратичное отклонение результата измерения от среднего, i которое рассчитывается по результатам всех N повторных измерений в i -той точке по формуле:

(3)

- n -ое измерение МЭД гамма излучения в i -той точке.

При использовании дозиметров интегрального типа EL-1101 (EL-1119) время измерения должно выбираться таким, чтобы случайная составляющая погрешности оценки значения результата измерения не превышала 20%. В этом случае значение считывается со шкалы приборов, а Δ 0 i определяется как произведение на статистическую погрешность измерений, считываемую со шкалы прибора.

С поисковым радиометром (дозиметром) производят обход всех помещений обследуемого здания по периметру каждой комнаты, производят замеры на высоте 1 м от пола на расстоянии 5 - 10 см от стен, и по оси каждой комнаты, производя замеры на высоте 5 - 10 см над полом. При обнаружении локальных повышений показаний используемого прибора, производят поиск максимума и фиксируют в журнале его положение и показания прибора в точке максимума. Кроме того, в журнал заносят максимальные показания прибора в каждом помещении.

Конкретные помещения (квартиры), подлежащие обследованию по , выбираются с учетом результатов проведенного предварительного обследования. При этом обязательно должны обследоваться те из них, в которых зафиксированы максимальные показания поисковых радиометров (дозиметров), а также обнаруженные точки локальных максимумов.

2.7. Измерения МЭД внешнего гамма-излучения в каждом обследуемом помещении выполняют в точке, расположенной в его центре на высоте 1 м от пола, а также в выявленных участках с максимальным значением МЭД гамма- излучения ().

Число повторных измерений N выбирают из условия, чтобы случайная составляющая относительной погрешности оценки среднего значения результата измерения на превышала 20%:

(5)

Здесь: - оценка среднего значения результата измерения в помещении, а случайную составляющую погрешности результата измерения дельта для доверительной вероятности P = 0.95 рассчитывают по формуле:

Δ = t 0.95 × s , мкЗв / ч (6)

в которой приняты такие же обозначения, как и в выражении ()

Результат измерения МЭД гамма-излучения в данном помещении представляют в форме:

МкЗв/ч.(7)

Результаты всех измерений заносятся в рабочий журнал.

где: - измеренное по - значение МЭД гамма-излучения на открытой местности, мкЗв/ч;

Δ σ - суммарная погрешность оценки разности двух величин - и (мкЗв/ч), определяемая из выражения

δ - предел относительной погрешности дозиметра, значение которого принимают по паспорту или свидетельству о поверке;

t 0.95 (ν )- значение коэффициента Стьюдента для доверительной вероятности P = 0.95 при числе наблюдений ν ;

ν - число степеней свободы, рассчитываемое по формуле:

,(10)

в которой n - число повторных наблюдений при измерении и S 0 , а m - то же для и S , соответственно.

При использовании дозиметров типа EL-1101 суммарная погрешность Δ σ определяется по формуле:

,(11)

где s 0 и s - случайные составляющие погрешности результатов измерения и , соответственно, для доверительной вероятности P = 0.95, рассчитываемые дозиметрами EL-1101 и EL-1119.

2.11. Для эксплуатируемого здания вопрос о перепрофилировании его или отдельных его помещений решается в установленном законом порядке (с согласия жильцов или домовладельца и т.п.) местными органами власти по согласованию с территориальным центром госсанэпиднадзора, если максимальное значение измеренной мощности дозы превышает мощность дозы на открытой местности более, чем на 0.6 мкЗв/ч (п. 7.3.4. НРБ-96).

3. Контроль эквивалентной равновесной объемной активности изотопа радона

3.1. Контролируемой величиной в зданиях и сооружениях, согласно НРБ-96 , является среднегодовое значение эквивалентной равновесной объемной активности (ЭРОА ) изотопов радона ( - радона и - торона) в воздухе помещений, равное:

,(12)

где

(13)

(14)

где A RaA , A RaB , A RaC , A ThB , A ThC - объемная активность в воздухе RaA (), RaB (), RaC (), ThB (), ThC (), соответственно, в Бк/м 3 .

3.2. Допускается проводить оценку ЭРОА Rn по результатам измерений объемной активности радона (A Rn ). В этом случае для пересчета измеренных значений А Rn в значении ЭРОА Rn используется коэффициент F Rn , характеризующий сдвиг радиоактивного равновесия между радоном и его дочерними продуктами в воздухе:

.(15)

Значения F Rn определяют экспериментальным путем по результатам одновременных измерений A Rn и ЭРОА Rn . В расчетах по формуле (15) используют значения F Rn , характерные для данного региона, периода года и типа здания. При отсутствии экспериментальных данных о значении F Rn , его принимают равным 0.5.

3.3. В соответствии с пп. 7.3.3 и 7.3.4 НРБ-96 , среднегодовое значение ЭРОА изотопов радона в воздухе помещений проектируемых и сдаваемых в эксплуатацию зданий жилищного и общественного назначения не должно превышать 100 Бк/м 3:

Бк/м 3 ;(16)

а в эксплуатируемых зданиях критерием необходимости проведения защитных мероприятий является невыполнение условия:

Бк/м 3 (17)

3.4. При приемке в эксплуатацию зданий, как правило, не имеется возможности проводить измерения среднегодового значения ЭРОА изотопов радона, поэтому проводят оценку его верхней границы по результатам измерений за период до 1 - 2 недель с учетом коэффициента вариации во времени значения ЭРОА радона V Rn (t) и основных погрешностей применяемых средств измерений:

Бк/м 3 ,()

где Δ Rn и Δ Tn - погрешности определения ЭРОА радона и торона в воздухе соответственно, значения которых рассчитываются по формуле:

Бк/м 3 (19)

в которой ЭРОА i - измеренное значение ЭРОА радона (торона) в воздухе, а δ 0 - основная погрешность измерения, принимаемая по свидетельству о поверке (метрологической аттестации) средства измерения.

Значение коэффициента вариации зависит от геолого-геофизических характеристик грунта под зданием, климатических особенностей региона, типа здания, сезона года, в течение которого проводились измерения, а также от продолжительности измерения (продолжительность пробоотбора) в используемой методике контроля.

В качестве расчетных значений коэффициента вариации при проверке выполнения соотношения () принимают среднее значение V Rn (t) , определенное в процессе специальных исследований в данном регионе в зданиях различного типа, выполненных в разные сезоны года.

При отсутствии данных о фактических значениях V Rn (t) их принимают по таблице 1 в зависимости от продолжительности измерения.

Таблица 1

Продолжительность измерения

≤ 1 час

1 - 3 суток

1 - 2 недели

1 - 3 месяца

Значение V Rn ( t )

Теплый сезон

Холодный сезон

0.95

0.75

то в остальных выбранных для обследования помещениях измерения ЭРОА Tn не проводятся, а проверка выполнения условия () осуществляется с использованием среднего значения ЭРОА торона, вычисленного из сделанных измерений.

Если условие (20) не выполняется, то во всех выбранных для обследования помещениях следует проводить измерения ЭРОА торона, а результаты этих измерений использовать при проверке выполнения условия ().

3.6. В качестве средств контроля ЭРОА радона и торона принимаются инспекционные и интегральные радиометры альфа-активных аэрозолей. Для контроля ЭРОА радона по величине объемной активности радона используются интегральные радиометры радона или мониторы объемной активности радона. При этом следует применять методы и средства измерений, позволяющие определять средние значения объемной активности радона за периоды времени не менее 3 суток. Технические и метрологические характеристики рекомендуемых типов приборов приведены в .

3.8. Измерения в выбранных для обследования помещениях вновь строящихся и реконструированных зданий проводятся после их предварительной выдержки (не менее 12 - 24 часов) при закрытых окнах и дверях (как в помещениях, так и в подъездах) и штатном режиме принудительной вентиляции (при ее наличии). Измерения рекомендуется проводить при наиболее высоком для данной местности барометрическом давлении и слабом ветре.

Измерения с использованием интегральных средств измерений и мониторов радона допускается начинать одновременной с закрытием окон и дверей и запуском вентиляции в штатном режиме.

Установку пассивных интегральных средств измерений ОА радона, мониторов радона и отбор проб воздуха при инспекционных измерениях следует производить в местах с минимальной скоростью воздухообмена, чтобы полученные результаты, по возможности, характеризовали максимальные значения ОА или ЭРОА радона и торона в данном помещении. При измерениях приборы следует располагать: не ниже 50 см от пола, не ближе 25 см от стен и 50 см от нагревательных элементов, кондиционеров, окон и дверей.

В каждом обследуемом помещении (квартире) проводится, как правило, одно измерение ЭРОА изотопов радона. При больших размерах обследуемого помещения количество измерений увеличивается из расчета: одно измерение на каждые 50 квадратных метров.

3.9. В зависимости от результатов измерений и основанной на них оценке верхней границы среднегодового значения ЭРОА изотопов радона принимаются следующие решения:

Помещения отвечают требованиям НРБ-96 ;

Необходимо провести дополнительные исследования (при этом указывается, какие и в каком количестве);

Необходимо проведение защитных мероприятий (по снижению гамма-фона, по снижению ЭРОА радона или оба мероприятия одновременно);

Здание (часть помещений здания) следует перепрофилировать (или снести).

3.9.1. Если во всех обследованных помещениях (не считая подвальных помещений) выполняется условие (), то здание можно считать радонобезопасным и удовлетворяющим нормативу, приведенному в НРБ-96 .

3.9.2. Если в некоторых обследованных помещениях (исключая подвальные) не выполняется условие (), но при этом во всех них выполняется соотношение:

Бк/м 3 ()

то в этих помещениях проводят повторные измерения ОА радона с использованием интегральных средств при большем времени экспозиции (не менее 2 недель) для уменьшения коэффициента вариации V Rn (t) и ЭРОА торона (при заметном его вкладе) с использованием приборов, имеющих меньшее значение основной погрешности, или многократно повторяя измерения (желательно в разное время суток) с последующим усреднением результатов измерений. При этом объем измерений для каждого помещения, как минимум, утраивается.

3.9.2.1. Если в результате повторного обследования оказалось, что в данных помещениях выполнено условие (), то здание считается радонобезопасным.

3.9.3. Если в результате первичного обследования выбранных помещений оказалось, что в ряде из них (исключая подвальные помещения) не выполняются одновременно условия () и (), то проводятся мероприятия по .

3.9.4. После реализации защитных мероприятий в помещениях, где они проводились, осуществляется повторная серия измерений, оценивается верхняя граница среднего значения ЭРОА изотопов радона в данных помещениях (квартирах) и проверяется выполнение для них условия ().

Примечание: Если в качестве одной из защитных мер принято дополнительное оборудование здания специальными вентиляторами или устройствами, то повторная серия измерений проводится при включенных дополнительных устройствах, работающих в штатном режиме.

3.9.5. Если после реализации защитных мероприятий в сдаваемом в эксплуатацию здании условие () не выполняется в ряде помещений (квартир), то решается вопрос о перепрофилировании или реконструкции в целом здания или отдельных его помещений (квартир).

3.10. При проведении обследования в эксплуатируемых зданиях выбор помещений (квартир) для проведения измерений зависит от конкретной ситуации, требований Заказчика (домовладельца, администрации и т.п.) и должен согласовываться с территориальным центром госсанэпиднадзора. При отсутствии каких-либо чрезвычайных ситуаций (наличие информации о локальных источниках радона, прогнозируемом превышении норматива и т.п.) и требований Заказчика обследовать конкретные помещения выбор (в случае обследования здания) подлежащих обследованию помещений (квартир) проводится также, как и при приемке их в эксплуатацию ().

3.11. В эксплуатируемых зданиях, как правило, определение среднегодового значения ЭРОА изотопов радона в выбранных помещениях (квартирах) производится на основе двукратных измерений ОА радона в холодный и теплый сезоны года общей продолжительностью 4 - 6 месяцев с использованием интегральных (трековых или электретных) средств. Учет дочерних продуктов торона производится согласно В том случае, если не выполняется условие (), в данных помещениях проводят многократные измерения ЭРОА торона в разное время суток и время года и оценивают среднее арифметическое значение, которое в дальнейшем используют в качестве оценки среднегодового значения. При этом измерения проводятся при обычном режиме функционирования обследуемых помещений, а при наличии принудительной вентиляции - при штатном режиме ее работы.

3.12. При двукратных измерениях ОА радона по п. 3.11 среднегодовое значение ЭРОА изотопов радона вычисляется как среднее арифметическое. При этом должно соблюдаться условие:

Бк/м 3 (22)

где Δ Rn и Δ Tn - погрешности среднегодовых значений ЭРОА радона и торона, соответственно, учитывающие основную погрешность использованных средств измерений.

В случае однократных измерений ОА (ЭРОА ) радона и ЭРОА торона производят, как и при приемке зданий в эксплуатацию, оценку верхней границы среднегодового значения ЭРОА изотопов радона, используя соотношение (), правая часть которого заменена на 200 Бк/м 3 , и .

Приложение 1

Форма протокола радиационного обследования

(Наименование организации и лаборатории)

_______________________________________________________________________________

(N Аттестата об аккредитации и срок его действия)

Протокол

радиационного обследования N ___ от "___" _______________ 199_ г.

Наименование объекта, его адрес __________________________________________________

_______________________________________________________________________________

Назначение объекта (жилое или общественное здание) ________________________________

Цель обследования объекта:

Приемка в эксплуатацию после завершения строительства;

Приемка в эксплуатацию после реконструкции или капремонта;

Обследование эксплуатируемого здания.

Заказчик_______________________________________________________________________

Проект здания (тип, серия) _______________________________________________________

Характеристика объекта:

Год постройки (реконструкции, капремонта) __________. Количество этажей ______

Тип фундамента ____________________________ Использованные стройматериалы

_________________________________________________________________________

Система вентиляции в здании:

Система вентиляции помещений:

Естественная,- принудительная,- кондиционирование.

Средства измерения:

№ п/п

Тип прибора

Зав. №

№ свидетельства о госпроверке

Срок действия свидетельства

Кем выдано свидетельство

Основная погрешность измерения

Нормативно-методическая документация, использованная при проведении измерений

(МВИ, номер и дата утверждения, кем утверждено) __________________________________

_______________________________________________________________________________

Условия проведения измерений:

Состояние принудительной вентиляции (кондиционеров):

Подвал:- штатный режим работы,- нештатный режим работы.

Остальные помещения здания:

Штатный режим работы,- нештатный режим работы.

Окна, двери помещений и подъездов закрыты,- открыты.

Указывать не обязательно:

Температура воздуха: в помещениях - _________°С, вне здания - ________°С

Барометрическое давление, скорость ветра _______________________________

Результаты измерений:

1. МЭД внешнего гамма-излучения на открытой местности

№ п/п

Место измерения

Зав. № дозиметра

Дота измерения

Среднее значение Н 0, i , мкЗв/ч

Минимальное значение Н 0 , мкЗв/ч

Погрешность Δ 0 , мкЗв/ч

2. МЭД внешнего гамма-излучения в помещениях

№ п/п

Зав. № дозиметра

Дата измерения

Показания поискового прибора *

Результат измерения Н , мкЗв/ч

Погрешность Δ , мкЗв/ч

Н-Н 0 +Δ t , мкЗв/ч.

* приводится без указания погрешности.

3. ЭРОА изотопов радона в воздухе помещений

№ п/п

Место измерения: этаж, № помещения, назначение

Дата (период) измерения

Бк/м 3

Бк/м 3

Максим. среднегодовая С max , Бк/м 3

ЭРОА± Δ Rn

ЭРОА± Δ Tn

Использованное при расчетах C max значение V Rn ( t ) = ___________________________________.

Примечание: .

Лицо, ответственное за проведение обследования:

Должность _____________________

Ф.И.О. ____________________________ Подпись _____________________________

Зав. лабораторией

Ф.И.О. ____________________________ Подпись _____________________________

Приложение 2

(справочное)

Перечень дозиметрических приборов, рекомендуемых для проведения измерений мощности экспозиционной дозы гамма-излучения

N п/п

Тип прибора

Тип детектора

Фирма (страна)

Измеряемые величины

Пределы измерений

Диапазон энергий МэВ

мкР/ч

ДРГ-01Т

Счетчики Гейгера

Россия

МЭксД

0.01-100 мР/ч

0.05-3.0

8 ¸ 9

ДБГ-06Т

Счетчики Гейгера

Россия

МЭквД

0.1-1000 мкЗв/ч

0.05-3.0

8 ¸ 9

МЭксД

0.01-100 мР/ч

1101

Nal (Т l ) сцинтиллятор

АТОМТЕХ (Беларусь)

МЭксД

0.005-100 мР/ч

0.04-3.0

1.5 ¸ 2

МЭквД

0.05-1000 мкЗв/ч

Еср

0.06-1.5 МэВ

1119

Пластиковый сцинтиллятор

АТОМТЕХ (Беларусь)

МэксД

0.005-10(6) мР/ч

0.05-10.0

1.5 ¸ 2

МПД

0.05-10 (7) мкГр/ч

0.05-10.0

МэквД

0.05-10 (7) мкЗв/ч

0.02-10.0

ЭксД

5 мкР-1000 Р

0.05-10.0

пд

0.05 мкГр/ч - 10 Гр

0.05-10.0

ЭквД

0.05 мкЗв/ч - 10 Зв

0.02-10.0

МЭксД - мощность экспозиционной дозы

МЭквД - мощность эквивалентной дозы

МПД- мощность поглощенной дозы в воздухе

ЭксД- экспозиционная доза

ЭквД- эквивалентная доза

ПД- поглощенная доза в воздухе

Еср.- средняя энергия фотонного излучения

Собственный фон и отклик на космическое излучение в единицах МЭксД

Гамма-монитор EL-1101 является высокочувствительным гамма-дозиметром с микропроцессорной обработкой результатов измерений. Он позволяет измерять как мощности экспозиционной и эквивалентной доз, так и среднюю энергию гамма-излучения. Он представляет собой 9-ти канальный сцинтилляционный Na l гамма-спектрометр, откалиброванный как дозиметр с неравномерностью чувствительности во всем энергетическом диапазоне менее 10%. Дозиметр позволяет запомнить до 100 результатов измерений и передавать их непосредственно в ПЭВМ по последовательному интерфейсу RS-232. Прибор имеет поисковый режим, позволяющий использовать его и в качестве поискового радиометра.

Гамма-дозиметр EL-1119 отличается от EL-1101 тем, что имеет пластиковый сцинтиллятор и позволяет измерять мощность экспозиционной, поглощенной в воздухе и эквивалентной дозы рентгеновского и гамма-излучений в диапазоне энергий 0.02 - 10 МэВ. Кроме того, он позволяет измерять и соответствующие дозы. По набору сервисных функций он аналогичен прибору EL-1101.

Приложение 3

(справочное)

Таблица

Перечень средств измерений, рекомендуемых для измерений ОА и ЭРОА радона в воздухе зданий и сооружений

N п/п

Наименование и тип прибора

Тип детектора

Фирма (страна)

Измеряемая величина

Диапазон и погрешность измерений

Автоматизация обработки

1

Интегральные средства измерений ОА и ЭРОА радона в воздухе

Трековый Комплекс "КСИРА 2010Z"

"Радон-Сервис" (Россия)

Интегральная ОА радона в воздухе

Диапазон экспозиций

200 ¸ 3×10 5

Бк×м (-3) ×сутки

с погрешностью ≤ 25%

есть

Трековый Комплекс "ТРЕК-РЭИ-1"

Нитрат-целлюлозный пленочный трековый детектор

НИИЦ РБ КО (Россия)

Интегральная ОА радона в воздухе

Диапазон экспозиций

200 ¸ 3×10 5

Бк×м (-3) ×сутки

с погрешностью ≤ 25%

нет

2

Квазиинтегральные средства измерений ОА и ЭРОА радона в воздухе

Угольные адсорберы

"НИТОН" (Россия)

Квазиинтегральная ОА радона в воздухе

Диапазон измерения ОА радона при экспозиции 1-6 суток от 10 Бк/м 3

нет

Радиометр радона РГГ-01Т

Угольные адсорберы

НИИ ПММ (Россия)

Квазиинтегральная ОА радона в воздухе

Диапазон измерения ОА радона

40 ¸ 2×10 5

Бк/м 3 , с погрешностью ≤ 30%

нет

Радиометр радона РМ-2000 (RTM-2010)

ППД с электростатическим осаждением Ро-218 (Ро-218//Ро-212)

SARAD (Германия) (ЗАО КПЦЕ)

Квазиинтегральная ОА радона и торона в воздухе

Диапазон измерения ОА радона

1 ¸ 1×10 7

есть

3

Средства измерений ОА и ЭРОА радона мгновенного типа

3.1

Радиометры аэрозолей ДПР и ДПТ

3.1.1

Радиометр "РАМОН-01"

Спектрометрический ППД

"Соло" (Казахстан)

ОА аэрозолей ДПР и ДПТ

Диапазон измерения ЭРОА радона

4 ¸ 2×10 5

Бк/м 3 ,с погрешностью ≤30%

есть

3.1.2

Многофункциональный комплекс "Камера", аэрозольный модуль

"НИТОН" (Россия)

ОА аэрозолей ДПР и ДПТ

Диапазон измерения ОА ДПР от 1 Бк/м 3 и более;

АО ДПТ от 0,1 Бк/м 3 и более

нет

3.1.3

Радиометр "РАА-02"

Спектрометрический ППД

СПб НИИРГ (Россия)

ОА аэрозолей ДПР и ДПТ

Диапазон измерения ЭРОА радона

15 ¸ 2×10 5

Бк/м 3 , с погрешностью ≤25%

есть

3.1.4

Радиометр "РГА-01Т"

Сцинтилляционный детектор

НИИ ПММ (Россия)

ОА аэрозолей ДПР и ДПТ

Диапазон измерения ЭРОА радона

15 ¸ 2×10 5

нет

3.2

Радиометры радона

3.2.1

Радиометр радона РРА-01М (и более поздние модификации - 03, О3М)

ППД с электростатическим осаждением

МТМ "Защита" (Россия)

ОА радона в воздухе

Диапазон измерения ОА радона

от 20 до 2×10 5

Бк/м 3 , с погрешностью 40 - 20%

(есть в более поздних моделях)

3.2.2

Многофункциональный комплекс "Камера"

Угольные адсорберы

"НИТОН" (Россия)

ОА радона в воздухе

Диапазон измерения ОА радона от 10 Бк/м 3 и более

нет

3.2.3

Радиометр радона РГГ-01Т

Угольные адсорберы

НИИ ПММ (Россия)

ОА радона в воздухе

Диапазон измерения ОА радона

40¸ 2×10 5

Бк/м 3 , с погрешностью ≤30%

нет

3.2.4

Радиометр радона RM-2000 (RTM-2010)

ППД с электростатическим осаждением

SARAD (Германия) (ЗАО КПЦЕ)

Квазиинтегральная OA радона и торона в воздухе

Диапазон измерения ОА радона

1 ¸ 1×10 7

Бк/м 3 , погрешность зависит от времени измерения

есть

4

Мониторы радона и аэрозолей ДПР в воздухе

Радон-монитор " Alpha GUARD PQ 2000"

Импульсная ионизационная камера с 3d-спектрометрической обработкой сигнала

Непрерывное измерение ОА

Диапазон измерения ОА радона

2¸ 2×10 6

Бк/м 3 , с погрешностью ≤10% (время измерения на уровне 2 Бк/м 3 – не менее 24 ч)

есть

Радон-монитор " Alpha GUARD PQ 2000- T & N "

Детектор по п. 3.1 с TTL -входом и аэрозольным модулем "WLM-02T&N"

"Genitron Instrument" (Германия )

Непрерывное измерение ОА радона, температуры, давления и относит. влажности воздуха

Диапазон измерения по ОА в соответствии с п. 4.1. Диапазон измерения ЭРОА радона

5¸ 2×10 5

Бк/м 3 , с погрешностью ≤10%

есть

Радон-монитор " Alpha GUARD PQ 2000- S " в комплекте с почвенным зондом "Soil-Kit", глубина отбора проб 20 - 100 см

Импульсная ионизационная камера с 3d-спектрометрической обработкой сигнала

"Genitron Instrument" (Германия )

Непрерывное измерение ОА радона, температуры, давления и относит. влажности воздуха

Диапазон измерения ОА радона в почвенном воздухе

1000 ¸ 2×10 6

Бк/м 3 , с погрешностью ≤10% (время 1 измерения не более 15 – 20 минут)

есть

Монитор радона и ДПР серии EQF-30хх

р адон ППД с электростатическим осаждением ; связанная и свободная фракции ДПР

SARAD (Германия) (ЗАО КПЦЕ)

ОА радона и ДПР в воздухе; возможно также измерение ОА торона

Диапазон измерения ОА радона и каждого из ДПР

5 ¸ 1×10 7

Бк/м 3 , с погрешностью, зависящей от времени измерения

есть

Средства измерений данного типа, кроме основной, могут иметь дополнительную погрешность, значение которой зависит главным образом от относительной влажности воздуха в контролируемом помещении. Кроме того, на результаты измерений может оказывать существенное влияние характер измерения ОА радона в помещении, причем связанная с этим дополнительная погрешность контролю практически не поддается.

Приложение 4

Оценка потенциала радоноопасности территорий

Оценка потенциальной радоноопасности территории застройки вблизи обследуемого здания определяется следующими факторами, перечисленными ниже в порядке убывания своей значимости:

- ЭРОА или ОА изотопов радона в принимаемых в эксплуатацию или эксплуатируемых зданиях, расположенных на данной территории застройки вблизи обследуемого здания;

Плотностью потока (интенсивностью эксхаляции) j (мБк/с × м 2) радона с поверхности земли;

- ОА радона С Rn в почвенном воздухе на глубине 1 метра от поверхности земли;

Удельной активностью радия-226 С Ra в слоях пород геологических разрезов.

В таблице 1 дана приближенная оценка потенциальной радоноопасности территорий, разбитой на 3 категории. Допускается производить оценку потенциальной радоноопасности

Таблица 1

ЭРОА изотопов радона, Бк/м 3

Плотность потока радона j , мБк/с×м 2

ОА радона С Rn , кБк/м 3

С Ra , Бк/кг

< 25

< 20

< 10

< 100

25 - 100

20 - 80

10 - 40

100 - 400

> 100

> 80

> 40

> 400

В таблице 1 дана приближенная оценка потенциальной радоноопасности территорий, разбитой на 3 категории. Допускается производить оценку потенциальной радоноопасности территории застройки на основе известного значения одного из четырех факторов, приведенных в таблице 1. Если известны значения двух и более факторов, приведенных в таблице 1, то потенциальную радоноопасность территории вблизи обследуемого здания оценивают по значению, соответствующему наибольшей степени потенциальной радоноопасности.

В таблице 2 приведен минимальный объем радиационного контроля в зависимости от степени потенциальной радоноопасности территории вблизи обследуемого здания, содержания 226 Ra в стройматериалах и засыпке, конструкции фундамента, наличия вентиляции в подвальном пространстве, назначения здания.

Таблица 2

Число помещений на различных этажах (в процентах от их общего числа на каждом этаже), подлежащих обследованию. Для подвального помещения приведено количество точек измерений, которое также зависит и от общей площади подвала.

Факторы, определяющие объем контроля

Подвал

Первый этаж

Верхний этаж

Другие этажи

Столбчатый фундамент без ограждающих подполье конструкций;

Принудительная вентиляция подполья и помещений

Сплошная монолитная фундаментная железобетонная плита;

Отсутствие вентиляции подполья

Отсутствие подпольного пространства;

Обследуются школьные и дошкольные учреждения, односемейные дома и коттеджи

5-10

Приложение 5

(справочное) 1

63.657

13

2.160

3.012

25

2.060

2.787

2

4.303

9.925

14

2.145

2.977

26

2.056

2.779

3

3.182

5.841

15

2.131

2.947

27

2.052

2.771

4

2.776

4.604

16

2.120

2.921

28

2.048

2.763

5

2.571

4.032

17

2.110

2.898

29

2.045

2.756

6

2.447

3.707

18

2.101

2.878

30

2.043

2.750

7

2.365

3.499

19

2.093

2.861

40

2.021

2.704

8

2.306

3.355

20

2.086

2.845

60

2.000

2.660

9

2.262

3.250

21

2.080

2.831

120

1.980

2.617

10

2.228

3.169

22

2.074

2.819

>120

1.960

2.576

11

2.201

3.106

23

2.069

2.807

12

2.179

3.055

24

2.064

2.797

где: N 0 и N k - число повторных измерений на открытой местности (в пункте с наименьшим средним значением МЭД) в k -ом помещении, соответственно.

ионизирующих излучений

ФГУП ”ВНИИФТРИ”

______________

_______________2010 год

Методика дозиметрического контроля

гамма-излучения в помещениях

С О Д Е Р Ж А Н И Е

1. Назначение методики

2. Принцип контроля

3. Средства и условия измерений

4.Измерение мощности амбиентного эквивалента дозы на открытой местности

5.Измерение мощности амбиентного эквивалента дозы в помещениях

1. НАЗНАЧЕНИЕ МЕТОДИКИ

Настоящая методика устанавливает порядок и правила выполнения измерений при дозиметрическом контроле гамма-излучения в помещениях, включая рабочие места, а также правила оценки результата контроля, методика в части организации контроля соответствует МУ 2.6.1.715-98 "Проведение радиационно-гигиенического обследования жилых и общественных зданий ". Методика предназначена для использования в аккредитованнойИспытательной лаборатории «Аликом-Плюс» и обеспечивает измерение мощности амбиентного эквивалента дозы (МЭД) фотонного излучения в диапазоне (0,мкЗв/ч с погрешностью (15 – 50) % (Р = 0.95).

2. ПРИНЦИП КОНТРОЛЯ

2.1. Дозиметрический контроль по данной методике основан на измерении надфоновой мощности амбиентного эквивалента дозы, обусловленной гамма-излучением. Процедура контроля включает три этапа:

Измерение МЭД, присущей данной местности на открытой местности, вблизи контролируемого здания (фоновое значение);

Измерение МЭД в помещениях контролируемого здания;

Оценку результата контроля и принятие решения.

2.2. Объект считается годным к эксплуатации, если превышение над фоном местности в контрольных точках не превышает 0,20 мкЗв/ч в соответствии с СП 2.6.1.2523-09 Нормы радиационной безопасности (НРБ-99/2009).

3. СРЕДСТВА И УСЛОВИЯ ИЗМЕРЕНИЙ

3.1. Настоящая методика предполагает применение для измерения МЭД гамма-излучения дозиметров: ДКГ-07Д «Дрозд». Применяемые приборы должны быть поверены в установленном порядке.

3.2. Измерения указанными приборами выполняются в натурных условиях, оговоренных в эксплуатационной документации на приборы:

Температура окружающей среды от минус 10°С до плюс 40°С;

При более низких температурах необходимо использовать утепляющие покрытия приборов и сокращать время пребывания приборов в условиях низких температур. Отличие натурных условий от нормальных должно быть учтено введением дополнительных систематических погрешностей в результатах измерений МЭД.

3.3. К работе допускаются операторы, изучившие настоящую методику, инструкции по эксплуатации применяемых приборов, требования ОСПОРБ-99/2010.

4. ИЗМЕРЕНИЕ МОЩНОСТИ амбиентного ЭКВИВАЛЕНТа ДОЗЫ

НА ОТКРЫТОЙ МЕСТНОСТИ

4.1. Измерение МЭД на открытой местности (фоновой МЭД) включает следующие операции:

Выбор контрольных точек на местности;

Измерение показаний дозиметра в контрольных точках;

Регистрация результатов и последующие действия.

4.2. Для проведения измерений выбираются не менее 5-х контрольных точек, расположенных на ровном участке местности на расстоянии не менее 30 м от близлежащих зданий. При этом следует выбирать участки с естественным покрытием без значительных техногенных воздействий (сады, парки, газоны, пустыри и т. д.)

4.3. Подготовку дозиметра к работе и проверку его работоспособности следует выполнять в соответствии с инструкцией по эксплуатации прибора.

4.4. Фоновую мощность амбиентного эквивалента дозы в каждой контрольной точке (Фj) определяют как среднее арифметическое значение для многократных (7-10) измерений фона.

где j=1,2...n - номер измерения фона в контрольной точке; Ni - показания дозиметра при i-ом измерении. В рабочем протоколе (журнале) регистрируют весь ряд результатов.

4.5. Фоновую мощность амбиентного эквивалента дозы (Dф) определяют как среднее арифметическое значение по контрольным точкам:

, (2)

где m - число контрольных точек.

4.6. Среднеквадратичное отклонение (СКО) результата измерений фона определяют по формуле:

, (3)

где j=1,2...m - номер контрольной точки. В рабочем протоколе измерений МЭД регистрируют весь ряд результатов.

5. ИЗМЕРЕНИЕ МОЩНОСТИ амбиентного

эквивалента ДОЗЫ В ПОМЕЩЕНИИ

5.1. Измерение МЭД в помещении включает следующие операции:

Выбор контрольных точек в помещении;

Подготовка дозиметра к работе;

Измерение МЭД в выбранных контрольных точках помещения;

Обработка результатов;

Определение предельных значений надфоновой МЭД;

Оформление результатов и последующие действия.

5.2. Контрольные точки для измерения МЭД выбираются:

Вдоль каждой из стен в трех точках на расстоянии 0.25 м от стены.

В случаях измерений для целей аттестации рабочих мест добавляются точки определенные как рабочие места.

5.3. Подготовку дозиметра к работе следует выполнить в соответствии с Инструкцией по эксплуатации прибора.

5.4. Мощность амбиентного эквивалента дозы в каждой выбранной контрольной точке Dj определяют как среднее арифметическое значение показаний дозиметра при многократных (n= 7÷10) измерениях:

, (4)

где j=1,2...m - номер контрольной точки; Ni - показания дозиметра в контрольной точке. В рабочем протоколе (журнале) регистрируют весь ряд результатов, m - число контрольных точек.

5.5. Обработка результатов дозиметрических измерений включает определение:

Превышение мощности амбиентного эквивалента дозы над фоном местности в каждой контрольной точке .

Суммарной неопределенности результата измерений надфоновой МЭД при Р=0,95 для каждой контрольной точки Dj.

Вычисления следует выполнять по следующим формулам:

, (5)

где Dф -- фоновая МЭД, измеренная в соответствии с п. 4.

5.6. Значение суммарной неопределенности результата измерений надфоновой МЭД (с доверительной вероятностью 0,95) для дозиметров типаДКГ-07Д «Дрозд»:

Δ = 2σФ + 0,3, (6)

5.7. В качестве предельных значений превышения мощности амбиентного эквивалента дозы над фоном местности – DПР принимается значение:

DПР = DНФ, max + Δ , (7)

где DНФ, max – максимальное значение надфоновой МЭД в контрольных точках.

5.8. По результатам дозиметрических измерений составляется рабочий протокол (запись в рабочем журнале) с указанием фоновой МЭД - Dф, номеров контрольных точек (в соответствии с картограммой), значений Dj, DjНФ, D и DПР.

5.9. На основании данных рабочего протокола дозиметрических измерений выполняются следующие действия:

Если для всех контрольных точек Dпр 0,2 мкЗв/час объект признается радиационно чистым и оформляется «Свидетельство радиационного качества» с заключением о радиационной чистоте объекта по форме, установленной для ЛРК (см. «Руководство по качеству);

Если значения Dпр находятся в диапазоне 0,2-0,3 мкЗв/час, то в точке максимальной Dпр следует выполнить более точные измерения МЭД (повторные измерения МЭД при большем числе измерений);

Если значение Dпр > 0,3 мкЗв/час, хотя бы для одной контрольной точки, объект признается радиационно загрязненным, оформляется Акт радиационного контроля по форме, установленной для ЛРК (см. «Руководство по качеству») с результатами дозиметрического контроля и приложением картограммы контрольных точек. После ознакомления заказчика Акт должен быть направлен в региональную службу Роспотребнадзора для принятия решения.

5.10. При измерениях для целей аттестации рабочих мест, измеряется мощность амбиентного эквивалента дозы (МЭД) Dр в контрольных точках определенных, как рабочие места. Dр определяют как среднее арифметическое значение показаний дозиметра при многократных (n= 7÷10) измерениях:

, (8)

Среднеквадратичное отклонение (стандартная неопределенность) результата измерений Dр, определяют по формуле:

, (9)

где р=1,2...m - номер контрольной точки; Di - показания дозиметра в контрольной точке.

В рабочем протоколе (журнале) регистрируют весь ряд результатов.

Значение расширенной неопределенности результата измерений Dр (Р= 0,95):

(10)

ΔО - основная относительная погрешность дозиметров типаДКГ-07Д «Дрозд» ;

ΔЭ – относительная дополнительная погрешность за счет энергетической зависимости чувствительности;

ΔА - относительная дополнительная погрешность за счет анизотропии чувствительности.

5.11. В качестве предельных значений мощности амбиентного эквивалента дозы в каждой контрольной точке определенной, как рабочее место – Dрп, принимается значение:

Dрп =Dр + Δр, (11)

5.12. При гигиенической классификации условий труда значения Dрп используется для оценки значений мощности максимальной потенциальной эффективной дозы мЗв/год в соответствии с Р 2.2.2006-05 «Руководство по гигиенической оценке факторов рабочей среды и трудового процесса. Критерии и классификация условий труда» Приложение 14.

Наблюдения за радиоактивностью объектов окружающей среды города выполняются согласно программам и постановлениям Правительства Москвы «О мерах по повышению радиационной безопасности населения г. Москвы».

Система радиационно-экологического мониторинга (РЭМ) охватывает всю территорию г. Москвы (в старых границах по 10 административным округам и территорию «Новой Москвы» Троицкого и Новомосковского административных округов), постоянно совершенствуется и состоит из следующих основных блоков: стационарные средства контроля, мобильные средства контроля, аналитический центр.

Стационарные средства контроля включают в себя наземную режимную сеть наблюдения, сеть стационарных постов контроля воздушного и водного бассейнов, сеть измерителей радиационного фона (рис. 1).

Мобильные средства радиационно-экологического контроля включают автомобильный комплекс для проведения автомобильной гамма съемки по магистралям и улицам города, а также мобильный водный комплекс, который проводит оценку радиационных параметров поверхностных вод и донных отложений реки Москвы.

Ежегодно анализируется более 2500 проб объектов окружающей среды.

Атмосферный воздух. На стационарных постах радиационного контроля (6 постов) контролировалась радиоактивность атмосферных аэрозолей и их выпадений на подстилающую поверхность в течение всего года. Пробы аэрозолей отбирались с помощью ВФУ типа «Тайфун-4» производительностью до 1200 м 3 /ч и «Тайфун-5» производительностью до 3000 м 3 /ч, с осаждением аэрозолей на фильтр ФПП-15-1,5. Атмосферные выпадения собирались в высокобортные кюветы. После недельной экспозиции пробы поступали на радиометрический и γ-спектрометрический анализы.

В таблице 1 представлены результаты измерений объемных активностей радионуклидов в атмосферном воздухе г. Москвы.

Таблица 1. Средние объемные активности радионуклидов в атмосферном воздухе г. Москвы, Бк/м 3

3,3 . 10 -3

3,7 . 10 -7

1,7 . 10 -5

8,9 . 10 -7

8,4 . 10 -7

8,3 . 10 -7

Значения величин объемной активности радионуклидов 226 Ra, 232 Th, 40 К объясняются процессами вторичного пылеподъема (ресуспензии) с поверхности земли.

Объемная активность радионуклида йода 131 I регистрировалась в каждом месяце, но не каждую неделю. Диапазон изменения величин объемной активности 131 I составил от 1,4.10 -7 до 2,8.10 -5 Бк/м 3 при среднем значении 1,9.10 -6 Бк/м 3 .

В таблице 2 представлены результаты измерений плотности радиоактивных выпадений в г. Москве.

Таблица 2. Плотность радиоактивных выпадений в г. Москве, Бк/(м 2 ·год)

Поверхностные воды и донные отложения. Стационарные посты гидросферы (7 постов) расположены на створах рек Москвы, Сетуни, Сходни и Яузы, а также в устье Соболевского ручья, как наиболее вероятного места поступления антропогенных загрязнений.

В таблице 3 представлены результаты измерений объемной активности радиоактивных веществ в воде открытых водоемов г. Москвы.

Таблица 3. Средняя объемная активность радиоактивных веществ в воде открытых водоемов, Бк/л

В таблице 4 представлены результаты измерений средней удельной активности радиоактивных веществ в донных отложениях открытых водоемов г. Москвы.

Таблица 4. Средняя удельная активность радиоактивных веществ в донных отложениях открытых водоемов г. Москвы, Бк/кг

Мощность эквивалентной дозы контролируется сетью измерителей радиационного фона (ИРФ) - 66 датчиков. ИРФ размещены с учетом охвата всех административных округов на магистралях, на крупных предприятиях, в местах большого скопления людей. Получение данных от датчиков проводится круглосуточно.

Кроме того, носимыми приборами в 2014 г. выполнено более 3000 измерений мощности эквивалентной дозы гамма-излучения. Средняя годовая мощность эквивалентной дозы гамма-излучения на территории Москвы составила 0,12 мкЗв/ч, при максимальном значении 0,20 мкЗв/ч (Котельническая наб., 1/15), что соответствует фоновым значениям. В 134 точках режимной сети термолюминесцентными датчиками (ТЛД) определялась интегральная поглощенная доза облучения от внешних источников облучения, которая в 2014 г. составила 0,86 мГр/год.

Радиоактивность почвы определялась в каждом из 134 пунктов контроля по пробам, отобранным с площадок 10х10 м 2 методом “конверта” из 5 см верхнего слоя.

В таблице 5 представлены результаты измерений средней плотности загрязнения техногенными радионуклидами почвы г. Москвы.

Таблица 5. Средняя плотность загрязнения техногенными радионуклидами почвы г. Москвы, Бк/м 2

В таблице 6 представлены результаты измерений удельной активности естественных радионуклидов в почве г. Москвы.

Таблица 6. Средняя удельная активность естественных радионуклидов в почвах г. Москвы, Бк/кг

Радиационные обследования объектов

Проведено обследование на содержание эквивалентной равновесной объемной активности (ЭРОА) радона 215 жилых зданий, 283 зданий детских образовательных учреждения (ДОУ) и зданий школ. Среднегодовые значения ЭРОА изотопов радона в обследованных квартирах и служебных помещениях находилась в пределах от 6 до 104 Бк/м 3 , в подвалах – от 6 до 295 Бк/м 3 .

Результаты радиационно-экологического мониторинга в Троицком и Новомосковском округах («Новая Москва»)

На рис. 2 представлена схема расположения пунктов отбора проб на временной режимной сети радиационного контроля и временной режимной сети наблюдения за водными объектами в Троицком и Новомосковском административных округах г. Москвы

Условные обозначения:

Результаты контроля содержания радионуклидов в пробах почвы и снежного покрова

Основные результаты радиационных параметров отобранных проб почвы и снежного покрова, отобранных в пунктах регулярной режимной сети радиационного контроля, представлены в таблицах 7-8.

Таблица 7. Средняя удельная активность радионуклидов в почвах (грунта), Бк/кг

Территория

отбора проб

А эфф

г. Москва

Таблица 8. Средняя радиоактивность радионуклидов снежного покрова, МБк/км 2

Территория отбора проб

г. Москва

Фактически полученные и приведенные в таблицах величины радиационных параметров проб почвы (грунта) и снежного покрова не превышают значений контрольных уровней, установленных для города Москвы.

Результаты контроля содержания радионуклидов в пробах воды и донных отложениях открытых водоёмов

Основные результаты радиационных параметров отобранных проб поверхностной воды и донных отложений, отобранных в пунктах радиационного контроля на режимных створах водного бассейна ТиНАО города Москвы, представлены в таблице 9.

Таблица 9. Средние значения удельных активностей радионуклидов в поверхностной воде и донных отложениях открытых водоемов

Территория отбора проб

Поверхностные

воды, мБк/кг

Донные отложения, Бк/кг

А эфф

г. Москва

Фактически полученные и приведенные в таблицах величины радиационных параметров проб поверхностной воды и донных отложений открытых водоемов не превышают значений контрольных уровней, установленных для города Москвы.

Результаты контроля содержания радионуклидов в пробах растительности травянистого яруса

Основные результаты радиационных параметров отобранных проб растительности травянистого яруса (трава, листва кустарников и деревьев), отобранных в пунктах регулярной режимной сети радиационного контроля представлены в таблице 10.

Таблица 10. Средняя удельная активность радионуклидов растительности травянистого яруса, Бк/кг

Территория отбора проб

г. Москва

Фактически полученные и приведенные в таблице величины радиационных параметров проб растительности травянистого яруса находятся в пределах значений многолетних наблюдений характерных для города Москвы.

Результаты контроля мощности эквивалентной дозы гамма-излучения и интегральной поглощенной дозы

Мощность эквивалентной дозы гамма-излучения (МЭД ГИ) и интегральные поглощенные дозы на территории округа контролировались:

  • носимыми дозиметрами (дозиметрами - радиометрами) при отборе проб окружающей среды;
  • автоматизированными измерителями радиационного фона (ИРФ) в пунктах АСКРО круглосуточно в режиме реального времени на протяжении всего года;
  • термолюминесцентными дозиметрами (ТЛД) с экспозицией равной шести месяцам для каждой группы дозиметров.

Результаты среднегодовых значений радиационного фона представлены в таблице 11.

Таблица 11. Среднегодовые значения МЭД ГИ, радиационного фона и интегральной поглощенной

Фактически полученные и приведенные в таблицах величины радиационных параметров не превышают значений контрольных уровней, установленных для города Москвы и многолетних наблюдений.

Контроль эквивалентной равновесной объемной активности (ЭРОА) дочерних продуктов радона в помещениях

Обследование помещений государственных бюджетных образовательных учреждений (ГБОУ) в городских округах «Троицк» и «Щербинка» осуществлялось с целью определения в них показателей радиационной безопасности.

В городском округе Троицк обследованы 30 ГБОУ и 30 жилых помещений. Получены следующие результаты: величина измеренной ЭРОА дочерних продуктов радона в воздухе помещений варьируется от 4 до 85 Бк/м 3 ; в подвалах – от 7 до 235 Бк/м 3 . МЭД ГИ в обследованных помещениях изменялась от 0,08 до 0,15 мкЗв/ч.

В городском округе Щербинка обследованы 30 жилых помещений. Получены результаты: величина измеренной ЭРОА радона в воздухе помещений варьируется от 6 до 44 Бк/м 3 ; в подвалах – от 6 до 80 Бк/м 3 . МЭД ГИ в обследованных помещениях изменялась от 0,07 до 0,11 мкЗв/ч. В районе расположения этих зданий произведены замеры содержания радона в атмосфере и МЭД ГИ на прилегающей местности. В атмосферном воздухе на прилегающей к зданиям территории ЭРОА радона не превышает 6 Бк/м 3 , а значения МЭД ГИ изменяются от 0,07 до 0,10 мкЗв/ч.

Фактически полученные величины значений МЭД ГИ и ЭРОА дочерних продуктов радона не превышают нормативных данных и данных многолетних наблюдений.

Результаты автомобильной гамма съемки улично-дорожной сети округа

Методом АГС были обследованы транспортные магистрали и дороги в крупных населённых пунктах ТиНАО, а также городские и сельские поселения, находящиеся на территории этих округов. Полученные результаты обследования транспортных магистралей ТиНАО представлены в таблице 12.

Таблица 12. Результаты обследования транспортных магистралей, находящихся на территории ТиНАО

Значения МЭД ГИ на транспортных магистралях ТиНАО находились в диапазоне 0,08 – 0,27 мкЗв/ч. Среднее значение МЭД ГИ по данным АГС составляет 0,12 мкЗв/ч. Значения, превышающие 0,20 мкЗв/ч, обусловлены спецификой дорожных материалов. Полученные результаты обследования методом АГС дорог в крупных населённых пунктах ТиНАО представлены в таблице 13.

Таблица 13. Результаты обследования дорог в крупных населённых пунктах, находящихся на территории ТиНАО

Значения МЭД ГИ на дорогах в обследованных населённых пунктах находились в диапазоне 0,08 – 0,30 мкЗв/ч. Среднее значение МЭД ГИ по данным АГС составляет 0,14 мкЗв/ч. Значения превышающие 0,20 мкЗв/ч обусловлены спецификой дорожных материалов.

Автомобильная гамма-съёмка в Новомосковском АО проводилась по основным транспортным магистралям в пределах населённых пунктов округа.

Значения МЭД ГИ на маршрутах находились в пределах от 0,08 до 0,28 мкЗв/ч, при среднем значении 0,14 мкЗв/ч. Значения, превышающие 0,20 мкЗв/ч, обусловлены спецификой дорожных материалов. Результаты работ по обследованию методом АГС дорог городских и сельских поселений округа представлены в таблице 14.

Таблица 14. Результаты обследования городских и сельских поселений в Новомосковском АО

Автомобильная гамма-съёмка проводилась по основным транспортным магистралям в пределах населённых пунктов округа и на подъездных дорогах к радиационно-опасным объектам округа.

Значения МЭД ГИ на маршрутах находились в пределах от 0,08 до 0,30 мкЗв/ч, при среднем значении - 0,14 мкЗв/ч. Значения, превышающие 0,20 мкЗв/ч, обусловлены спецификой дорожных материалов. Результаты обследования методом АГС городских и сельских поселений округа приведены в таблице 15.

Таблица 15. Результаты обследования городских и сельских поселений по Троицкому АО

№ п/п

Название поселений, находящихся на территории Троицкого АО

СП Михайлово-Ярцевское

СП Первомайское

СП Новофёдоровское

ГП Киевское

ГО Троицк

СП Щаповское

СП Клёновское

В целом по округу:

Превышений допустимых значений МЭД ГИ и участков техногенного радиоактивного загрязнения на подъездных дорогах к радиационно-опасным предприятиям округа не обнаружено.

Результаты обследования методом АГС подъездных дорог к радиационно-опасным предприятиям приведены в таблице 16.

Таблица 16. Результаты обследования подъездных дорог к радиационно-опасным предприятиям

№ п/п

Наименование предприятий

Максимальные значения МЭД ГИ, мкЗв/ч

Институт земного магнетизма им. Н.В. Пушкова (ИЗМИРАН)

Институт физики высоких давлений им. Л.Ф. Верещагина (ИФВД)

Филиал Физического института РАН (ФИАН) ОКБ (ФИАН)

Контроль мощности эквивалентной дозы и интегральной поглощенной дозы

Мощность эквивалентной дозы и интегральной поглощенной дозы на территории округа контролируется следующими методами:

  • мощность эквивалентной дозы гамма-излучения (МЭД ГИ) - носимыми радиометрами при отборе проб окружающей среды;
  • методом термолюминесцентной дозиметрии (ТЛД) с непрерывной экспозицией по шесть месяцев (интегральная поглощенная доза - Д).

Результаты среднегодовых значений радиационного фона даны в таблице 17.

Таблица 17. Мощность эквивалентной дозы и интегральная поглощенная доза

Территория

МЭД ГИ, мкЗв/ч

Д, мГр/год

г. Москва

Автомобильная гамма-съёмка территории Новомосковского АО

Автомобильная гамма-съёмка проводилась по основным транспортным магистралям, на территориях в пределах населённых пунктов округа и на подъездных путях к радиационно-опасным объектам округа. Значения МЭД ГИ на обследованных маршрутах находились в пределах естественного радиационного фона от 0,06 до 0,25 мкЗв/ч. Значения МЭД ГИ около радиационно-опасных объектов определялись в фиксированных контрольных точках (КТ), расположенных в местах наибольшей потенциальной радиационной опасности. Результаты обследования объектов и магистралей приведены в таблице 18.

Таблица 18. Результаты АГС

Название магистралей и объектов, находящихся на территории НАО

Значения МЭД ГИ, мкЗв/ч

макс.

Киевское ш.

Калужское ш.

Варшавское ш.

Боровское ш.

Трасса между Калужским ш. и Киевским ш. через деревню Летово, Валуево, свхз. Московский

Завод «Мосрентген»

Автомобильная гамма-съёмка территории Троицкого АО

Автомобильная гамма-съёмка проводилась по основным транспортным магистралям, на территориях в пределах населённых пунктов округа и на подъездных путях радиационно-опасным объектам округа. Значения МЭД ГИ на обследованных маршрутах находились в пределах естественного радиационного фона от 0,06 до 0,25 мкЗв/ч. Значения МЭД ГИ около радиационно-опасных объектах определялись в фиксированных контрольных точках (КТ), расположенных в местах наибольшей потенциальной радиационной опасности. Результаты обследования объектов и магистралей приведены в таблице 19.

Таблица 19. Результаты АГС

Название магистралей и объектов, находящихся на территории ТАО

Значения МЭД ГИ, мкЗв/ч

макс.

Киевское ш.

Калужское ш.

Подольское ш.

Боровское ш.

Трасса между Калужским ш. и Киевским ш. через д. Птичное, Первомайское

Трасса между Калужским ш. и Подольским ш. через Щапово, Шаганино

Бетонное кольцо (часть) (трасса А107)

Троицкий институт инновационных и термоядерных исследований (ТРИНИТИ)

Институт земного магнетизма имени Н.В.Пушкова (ИЗМИРАН)

Институт физики высоких давлений имени Л.Ф.Верещагина, Троицкий филиал (ИФВД)

Филиал Физического института РАН (ФИАН), ОКБ ФИАН

Институт спектроскопии РАН (ИСАН)

Институт ядерных исследований РАН (ИЯИ РАН)

Пешеходный радиационный контроль территорий ТиНАО

Проведен пешеходный радиационный контроль территорий, прилегающих к радиационно-опасным объектам, определенным распоряжением Правительства РФ от 14.09.2009 №1311-р (в ред. от 11.04.2011 г.).

Проведен поисковый (пешеходный) радиационный контроль территорий Троицкого и Новомосковского административных округов в городе Москве на площадях 225 000 м 2 и 275 000 м 2 соответственно, общей площадью - 500 000 м 2 .

В Троицком административном округе в ГО Троицк обследованы территории микрорайона Солнечный (между улицами Физическая, Солнечная и Октябрьским проспектом), парка усадьбы Троицкое, территория по Октябрьскому проспекту вокруг Детской школы искусств им. М.И. Глинки. В СП Краснопахорское обследована территория спортивного парка «Красная Пахра».

В Новомосковском административном округе в поселке Мосрентген обследована территория вокруг прудов между улицей Мосрентген (напротив завода Мосрентген) и проездом Героя России Соломатина и территория городского парка по улице Мосрентген.

В ГП Московский обследована территория вблизи деревни Саларьево в 1,2 км от полигона ТБО «Саларьево» рядом с площадкой под строительство электродепо метро «Саларьево».

Максимальное значение МЭД ГИ на обследованной территории равно 0,23 мкЗв/ч, что не превышает допустимых значений по ОСПОРБ 99/2010 п.5.1.6. Источников ионизирующих излучений и локальных радиационных аномалий на обследованной территории не выявлено.

Выводы

  1. Контролируемые радиационные параметры объектов окружающей среды в 2014 году находились в пределах значений, соответствующих радиационному фону, характерному для города Москвы, и не превышали установленных контрольных уровней («Контрольные уровни обеспечения радиоэкологической безопасности населения г. Москвы» М., 2008).
  2. Значения интегральных поглощенных доз находятся в пределах естественных вариаций и не превышают средних доз по городу Москве.
  3. Наличие в Москве большого количества радиационно-опасных объектов и предприятий-владельцев радиоактивных веществ (РВ) и радиоактивных отходов (РАО) создает потенциальную опасность радиационного инцидента.

Заключение

Анализ радиационно-экологической обстановки в Москве за 2014 г. показал, что значения контролируемых радиационных параметров объектов окружающей среды находились в пределах многолетних колебаний техногенного фона столицы.