Определение средней линии трапеции и ее свойства. Как найти среднюю линию трапеции

Понятие средней линии трапеции

Для начала вспомним, какую фигуру называют трапецией.

Определение 1

Трапецией называется четырехугольник, у которого две стороны параллельны, а две другие не параллельны.

При этом параллельные стороны называются основаниями трапеции, а не параллельные -- боковыми сторонами трапеции.

Определение 2

Средняя линия трапеции -- это отрезок, соединяющий середины боковых сторон трапеции.

Теорема о средней линии трапеции

Теперь введем теорему о средней линии трапеции и докажем её вектор ным методом.

Теорема 1

Средняя линия трапеции параллельна основаниям и равна их полусумме.

Доказательство.

Пусть нам дана трапеция $ABCD$ с основаниями $AD\ и\ BC$. И пусть $MN$ -- средняя линия этой трапеции (рис. 1).

Рисунок 1. Средняя линия трапеции

Докажем, что $MN||AD\ и\ MN=\frac{AD+BC}{2}$.

Рассмотрим вектор $\overrightarrow{MN}$. Используем далее правило многоугольника для сложения векторов. С одной стороны получим, что

С другой стороны

Сложим два последних равенства, получим

Так как $M$ и $N$ - середины боковых сторон трапеции, то будем иметь

Получаем:

Следовательно

Из этого же равенства (так как $\overrightarrow{BC}$ и $\overrightarrow{AD}$ сонаправлены, а, следовательно, коллинеарны) получаем, что $MN||AD$.

Теорема доказана.

Примеры задач на понятие средней линии трапеции

Пример 1

Боковые стороны трапеции равны $15\ см$ и $17\ см$ соответственно. Периметр трапеции равен $52\ см$. Найти длину средней линии трапеции.

Решение.

Обозначим среднюю линию трапеции через $n$.

Сумма боковых сторон равна

Следовательно, так как периметр равен $52\ см$, сумма оснований равна

Значит, по теореме 1, получаем

Ответ: $10\ см$.

Пример 2

Концы диаметра окружности удалены от его касательной соответственно на $9$ см и $5$ см. Найти диаметр этой окружности.

Решение.

Пусть нам дана окружность с центром в точке $O$ и диаметром $AB$. Проведем касательную $l$ и построим расстояния $AD=9\ см$ и $BC=5\ см$. Проведем радиус $OH$ (рис. 2).

Рисунок 2.

Так как $AD$ и $BC$ - расстояния до касательной, то $AD\bot l$ и $BC\bot l$ и так как $OH$ -- радиус, то $OH\bot l$, следовательно, $OH|\left|AD\right||BC$. Из этого всего получаем, что $ABCD$ - трапеция, а $OH$ - ее средняя линия. По теореме 1, получаем

Четырёхугольник, у которого только две стороны параллельны называются трапецией .

Параллельные стороны трапеции называются её основаниями , а те стороны, которые не параллельны, называются боковыми сторонами . Если боковые стороны равны, то такая трапеция является равнобедренной. Расстояние между основаниями называется высотой трапеции.

Средняя Линия Трапеции

Средняя линия - это отрезок, соединяющий середины боковых сторон трапеции. Средняя линия трапеции параллельна её основаниям.

Теорема:

Если прямая, пересекающая середину одной боковой стороны, параллельна основаниям трапеции, то она делит пополам вторую боковую сторону трапеции.

Теорема:

Длина средней линии равна среднему арифметическому длин её оснований

MN || AB || DC
AM = MD; BN = NC

MN средняя линия, AB и CD - основания, AD и BC - боковые стороны

MN = (AB + DC)/2

Теорема:

Длина средней линии трапеции равна среднему арифметическому длин её оснований.

Основная задача : Доказать, что средняя линия трапеции делит пополам отрезок, концы которого лежат в середине оснований трапеции.

Средняя Линия Треугольника

Отрезок, соединяющий середины двух сторон треугольника, называется средней линией треугольника. Она параллельна третьей стороне и её длина равна половине длины третьей стороны.
Теорема : Если прямая, пересекающая середину одной стороны треугольника, параллельна другой стороне данного треугольника, то она делит третью сторону пополам.

AM = MC and BN = NC =>

Применение свойств средней линии треугольника и трапеции

Деление отрезка на определённое количество равных частей.
Задача: Разделить отрезок AB на 5 равных частей.
Решение:
Пусть p это случайный луч, у которого начало это точка А, и который не лежит на прямой AB. Мы последовательно откладываем 5 равных сегментов на p AA 1 = A 1 A 2 = A 2 A 3 = A 3 A 4 = A 4 A 5
Мы соединяем A 5 с B и проводим такие прямые через A 4 , A 3 , A 2 и A 1 , которые параллельны A 5 B. Они пересекают AB соответственно в точках B 4 , B 3 , B 2 и B 1 . Эти точки делят отрезок AB на 5 равных частей. Действительно, из трапеции BB 3 A 3 A 5 мы видим, что BB 4 = B 4 B 3 . Таким же образом, из трапеции B 4 B 2 A 2 A 4 получаем B 4 B 3 = B 3 B 2

В то время как из трапеции B 3 B 1 A 1 A 3 , B 3 B 2 = B 2 B 1 .
Тогда из B 2 AA 2 следует, что B 2 B 1 = B 1 A. В заключении получаем:
AB 1 = B 1 B 2 = B 2 B 3 = B 3 B 4 = B 4 B
Ясно, что для разделения отрезка AB на другое количество равных частей, нам нужно проецировать то же самое количество равных сегментов на луч p. И далее продолжать вышеописанным способом.


Площадь трапеции. Приветствую вас! В этой публикации мы рассмотрим указанную формулу. Почему она именно такая и как её понять. Если будет понимание, то и учить её вам нет необходимости. Если же вы просто хотите посмотреть эту формулу и при чём срочно, то сразу можете прокрутить страницу вниз))

Теперь подробно и по порядку.

Трапеция это четырёхугольник, две стороны этого четырёхугольника параллельны, две другие нет. Те, что не параллельны – это основания трапеции. Две другие называются боковыми сторонами.

Если боковые стороны равны, то трапеция называется равнобедренной. Если одна из боковых сторон перпендикулярна основаниям, то такая трапеция называется прямоугольной.

В классическом виде трапецию изображают следующим образом – большее основание находится внизу, соответственно меньшее вверху. Но никто не запрещает изображать её и наоборот. Вот эскизы:


Следующее важное понятие.

Средняя линия трапеции это отрезок, который соединяет середины боковых сторон. Средняя линия параллельна основаниям трапеции и равна их полусумме.

Теперь давайте вникнем глубже. Почему именно так?

Рассмотрим трапецию с основаниями a и b и со средней линией l , и выполним некоторые дополнительные построения: через основания проведём прямые, а через концы средней линии перпендикуляры до пересечения с основаниями:


*Буквенные обозначения вершин и других точек не введены умышленно, чтобы избежать лишних обозначений.

Посмотрите, треугольники 1 и 2 равны по второму признаку равенства треугольников, треугольники 3 и 4 тоже самое. Из равенства треугольников следует равенство элементов, а именно катетов (они обозначены соответственно синим и красным цветом).

Теперь внимание! Если мы мысленно «отрежем» от нижнего основания синий и красный отрезок, то у нас останется отрезок (это сторона прямоугольника) равный средней линии. Далее, если мы «приклеим» отрезанные синий и красный отрезок к верхнему основанию трапеции, то у нас получится также отрезок (это тоже сторона прямоугольника) равный средней линии трапеции.

Уловили? Получается, что сумма оснований будет равна двум средним линиям трапеции:

Посмотреть ещё одно объяснение

Сделаем следующее – построим прямую проходящую через нижнее основание трапеции и прямую, которая пройдёт через точки А и В:


Получим треугольники 1 и 2, они равны по стороне и прилегающим к ней углам (второй признак равенства треугольников). Это означает что полученный отрезок (на эскизе он обозначен синим) равен верхнему основанию трапеции.

Теперь рассмотрим треугольник:


*Средняя линия данной трапеции и средняя линия треугольника совпадают.

Известно, что треугольника равна половине параллельного ей основания, то есть:

Хорошо, разобрались. Теперь о площади трапеции.

Площадь трапеции формула:


Говорят: площадь трапеции равна произведению полусуммы её оснований и высоты.

То есть, получается, что она равна произведению средней линии и высоты:

Вы, наверное, уже заметили, что это очевидно. Геометрически это можно выразить так: если мы мысленно отрежем от трапеции треугольники 2 и 4 и положим их соответственно на треугольники 1 и 3:


То у нас получится прямоугольник по площади равный площади нашей трапеции. Площадь этого прямоугольника будет равна произведению средней линии и высоты, то есть можем записать:

Но дело тут не в записи, конечно, а в понимании.

Скачать (посмотреть) материал статьи в формате *pdf

На этом всё. Успеха вам!

С уважением, Александр.

Цели урока:

1) познакомить учащихся с понятием средней линии трапеции, рассмотреть её свойства и доказать их;

2) научить строить среднюю линию трапеции;

3) развивать умение учащихся использовать определение средней линии трапеции и свойства средней линии трапеции при решении задач;

4) продолжать формировать у учащихся умение говорить грамотно, используя необходимые математические термины; доказывать свою точку зрения;

5) развивать логическое мышление, память, внимание.

Ход урока

1. Проверка домашнего задания происходит в течение урока. Домашнее задание было устным, вспомнить:

а) определение трапеции; виды трапеций;

б) определение средней линии треугольника;

в) свойство средней линии треугольника;

г) признак средней линии треугольника.

2. Изучение нового материала.

а) На доске изображена трапеция ABCD.

б) Учитель предлагает вспомнить определение трапеции. На каждой парте имеется схема-подсказка, помогающая вспомнить основные понятия в теме “Трапеция” (см. Приложение 1). Приложение 1 выдаётся на каждую парту.

Ученики изображают трапецию ABCD в тетради.

в) Учитель предлагает вспомнить, в какой теме встречалось понятие средней линии (“Средняя линия треугольника”). Учащиеся вспоминают определение средней линии треугольника и её свойство.

д) Записывают определение средней линии трапеции, изображая её в тетради.

Средней линией трапеции называется отрезок, соединяющий середины её боковых сторон.

Свойство средней линии трапеции на данном этапе остаётся не доказанным, поэтому следующий этап урока предполагает работу над доказательством свойства средней линии трапеции.

Теорема. Средняя линия трапеции параллельна её основаниям и равна их полусумме.

Дано: ABCD – трапеция,

MN – средняя линия ABCD

Доказать , что:

1. BC || MN || AD.

2. MN = (AD + BC).

Можно выписать некоторые следствия, вытекающие из условия теоремы:

AM = MB, CN = ND, BC || AD.

На основании только перечисленных свойств доказать требуемое невозможно. Система вопросов и упражнений должна подвести учащихся к желанию связать среднюю линию трапеции со средней линией какого-нибудь треугольника, свойства которой они уже знают. Если предложений не последует, то можно задать вопрос: как построить треугольник, для которого отрезок MN являлся бы средней линией?

Запишем дополнительное построение для одного из случаев.

Проведём прямую BN, пересекающую продолжение стороны AD в точке K.

Появляется дополнительные элементы – треугольники: ABD, BNM, DNK, BCN. Если мы докажем, что BN = NK, то это будет означать, что MN – средняя линия ABD, а дальше можно будет воспользоваться свойством средней линии треугольника и доказать необходимое.

Доказательство:

1. Рассмотрим BNC и DNK, в них:

а) CNB =DNK (свойство вертикальных углов);

б) BCN = NDK (свойство внутренних накрест лежащих углов);

в) CN = ND (по следствию из условия теоремы).

Значит BNC =DNK (по стороне и двум прилежащим к ней углам).

Что и требовалось доказать.

Доказательство можно провести на уроке устно, а дома восстановить и записать в тетради (на усмотрение учителя).

Необходимо сказать и о других возможных способ доказательства этой теоремы:

1. Провести одну из диагоналей трапеции и использовать признак и свойство средней линии треугольника.

2. Провести CF || BA и рассмотреть параллелограмм ABCF и DCF.

3. Провести EF || BA и рассмотреть равенство FND и ENC.

ж) На этом этапе задаётся домашнее задание: п. 84, учебник под ред. Атанасяна Л.С. (доказательство свойства средней линии трапеции векторным способом), записать в тетради.

з) Решаем задачи на использование определения и свойства средней линии трапеции по готовым чертежам (см. Приложение 2). Приложение 2 выдаётся каждому учащемуся, и решение задач оформляется на этом же листе в краткой форме.

Отрезок прямой, соединяющей середины боковых сторон трапеции, называется средней линией трапеции. О том, как найти среднюю линию трапеции и как она соотносится с другими элементами этой фигуры, мы расскажем ниже.

Теорема о средней линии

Нарисуем трапецию, в которой AD - большее основание, BC - меньшее основание, EF - средняя линия. Продолжим основание AD за точку D. Проведём линию BF и продолжим её до пересечения с продолжением основания AD в точке О. Рассмотрим треугольники ∆BCF и ∆DFO. Углы ∟BCF = ∟DFO как вертикальные. CF = DF, ∟BCF = ∟FDО, т.к. ВС // АО. Следовательно, треугольники ∆BCF = ∆DFO. Отсюда стороны BF = FO.

Теперь рассмотрим ∆АВО и ∆EBF. ∟ABO общий для обоих треугольников. BE/AB = ½ по условию, BF/BO = ½, поскольку ∆BCF = ∆DFO. Следовательно, треугольники ABO и EFB подобны. Отсюда отношение сторон EF/AO = ½, как и отношение других сторон.

Находим EF = ½ AO. По чертежу видно, что AO = AD + DO. DO = BC как стороны равных треугольников, значит, AO = AD + BC. Отсюда EF = ½ АО = ½ (AD + BC). Т.е. длина средней линии трапеции равна полусумме оснований.

Всегда ли средняя линия трапеции равна полусумме оснований?

Предположим, что существует такой частный случай, когда EF ≠ ½ (AD + BC). Тогда ВС ≠ DO, следовательно, ∆BCF ≠ ∆DCF. Но это невозможно, поскольку у них равны два угла и стороны между ними. Следовательно, теорема верна при всех условиях.

Задача о средней линии

Предположим, в нашей трапеции АВСD АD // ВС, ∟A=90°, ∟С = 135°, АВ = 2 см, диагональ АС перпендикулярна боковой стороне. Найдите среднюю линию трапеции EF.

Если ∟А = 90°, то и ∟В = 90°, значит, ∆АВС прямоугольный.

∟BCA = ∟BCD - ∟ACD. ∟ACD = 90° по условию, следовательно, ∟BCA = ∟BCD - ∟ACD = 135° - 90° = 45°.

Если в прямоугольном треугольнике ∆АВС один угол равен 45°, значит, катеты в нём равны: АВ = ВС = 2 см.

Гипотенуза АС = √(АВ² + ВС²) = √8 см.

Рассмотрим ∆ACD. ∟ACD = 90° по условию. ∟CAD = ∟BCA = 45° как углы, образованные секущей параллельных оснований трапеции. Следовательно, катеты AC = CD = √8.

Гипотенуза AD = √(AC² + CD²) = √(8 + 8) = √16 = 4 см.

Средняя линия трапеции EF = ½(AD + BC) = ½(2 + 4) = 3 см.