Презентация на тему аварии на радиационных опасных объектах. Аварии на радиационно опасных объектах и их возможные последствия. Аварии на радиационно опасных объектах презентация

В нашей стране на многих объектах экономики
используются радиоактивные вещества.
В России в настоящее время имеются:
1.10 атомных электростанций(30 энергоблоков).
2.113 исследовательских ядерных установок.
3.12 промышленных предприятий топливного цикла.
4. 9 атомных судов с объектами их обеспечения.
5. 13 тысяч других предприятий где используются
радиоактивные вещества.

Радиационно опасный объект – это объект, на котором
хранят, перерабатывают или транспортируют радиоактивные вещества, при аварии на котором или
при его разрушении может произойти облучение
ионизирующим излучением людей или радиоактивное
загрязнение окружающей среды.

Ионизирующее излучение создаётся при радиоактивном распаде, ядерных превращениях, торможении
заряженных частиц в веществе и образует при взаимодействии со средой ионы разных знаков.
Под радиоактивным загрязнением окружающей среды
понимается присутствие радиоактивных веществ на
поверхности местности, в воздухе, в теле человека в
количестве, превышающем уровни, установленные
нормами радиационной безопасности.

К радиационно-опасным объектам относятся:

Предприятия
ядерного
топливного
цикла

Атомная электростанция
(АЭС)

Объекты с
ядерными
энергетическим
и установками

Ядерные боеприпасы
и склады для их
хранения

Возможные последствия аварии на радиационно-опасном объекте

Облучение
людей

Радиоактивное
загрязнение
местности

В Российской Федерации восемь из
десяти действующих АЭС:
1. Обнинская(Калужская область).
2.Ленинградская.
3.Курская.
4.Смоленская.
5.Калининская.
6.Нововоронежская.
7.Балаклавская(Саратовская область).
8.Ростовская.

В период с 1957 года по 2011год в мире произошли
следующие аварии на АЭС:
1. 1957г. в Великобритании (Виндскейл).
2. 1979г. в США (Три-Майл-Айленд).
3.1986г. в СССР (Чернобыль – Украина).
4.2011г.(11марта) в Японии (Фукусима).
Авария на Чернобыльской АЭС

Международная шкала событий на АЭС
для оценки серьёзности происшедшего, быстрого оповещения и выбора адекватных мер безопасности
Кате
гори
я
событие
происшествие
Внешние последствия и
меры безопасности
примеры
Авария
7
Глобальная
авария
Разрушение реактора
и
Выброс в
окружающую
среду значительной
доли радиоактивных
продуктов
Возможность острых лучевых
поражений и последующее
влияние на здоровье населения
на значительных территориях
более чем одной страны
Чернобыль, СССР, 26.04.
1986г.
6
Тяжёлая
авария
Значительное
разруше-ние
активной зоны с
выбросом
радиоактив- ных
продуктов
Возможность влияния на
здоровье населения.
Необходимость частичной
эвакуации.
Виндскейл, Великобритания,
1957г.
5
Авария
с риском
для окружающей
среды.
Разрушение части
активной зоны с
выбросом
радиоактивных
продуктов
Возможность влияния на
здоровье населе6ния.В
отдельных случаях частичное
проведение противоаварийных
мер(йодная профилактика)
4
Авария в
пределах
АЭС
Частичное
разрушение активной
зоны с выбросом
радиоактивных
продуктов в пределах
помещений АЭС
Облучение населения дозами не
выше 1бэр.Меры по защите не
требуются.Возможность острых
лучевых поражений персонала
Три-Майл-Айленд, США
1979г.
Сант-Лаурент, Франция, 1980г.

Происшествия
3
Серьёзное
происшест
вие
Нарушение нормальной
работы оборудования,
приведшее к загрязнению АЭС и небольшому
выбросу радиоактивных
веще-ств в окружающую
среду
Облучение населения не более
нормы.Меры по защите не требуются.Возможно переоблучен-ие
персонала дозами до5бэр
Ванделлос,
Испания, 1989г.
2
Происшест
вие средней
тяжести
Отказы оборудования, не
приведшие к
нарушениям
безопасности АЭС
-
-
1
Незначител
ьное
происшест
вие
Функциональные
отключения, которые не
представляют какоголибо риска,но
указывают на недостатки
по безопасности
-
-
0
Не имеют
значения
для
безопаснос
ти
Отклонение режимов без
превышения пре-делов
безопасности
-
-

Влияние ионизирующего облучения на организм человека

Немецкий
физик
Вильге́льм
Ко́нрад
Рентге́н в 1895
году открыл
излучение
названное его
именем

Антуан Анри
Беккерель в 1896
году обнаружил
излучение солей
урана.
Один из
первооткрывателей
радиоактивности

Мари́я
Склодо́вская
-Кюри́ ,
Пьер Кюри
Совместно с мужем
открыла
элементы радий (от лат.
radius «луч»), полоний
(от латинского названия
Польши,Polōnia - дань
уважения родине Марии
Склодовской).
в 1898 году установили излучение полония и радия

Ионизирующее излучение

Альфа
– излучение
Бета – излучение
Гамма - излучение

Лучевая болезнь

Лучевая
болезнь
возникает при
воздействии на
организм
ионизирующих
излучений в
дозах,
превышающих
предельно
допустимых

Единица эквивалентной дозы
облучения – зиверт
1зв=100бэр

Бэр
До 1963 года эта единица понималась как
«биологический эквивалент рентгена»
- устаревшая внесистемная единица
измерения эквивалентной дозы ионизирующего
излучения.
Зи́верт
- это единица измерения
эффективной и эквивалентной доз ионизирующего
излучения в Международной системе единиц (СИ),
используется с 1979 года.
1 зиверт - это количество энергии, поглощённое
килограммом биологической ткани, равное по
воздействию поглощённой дозе гамма-излучения.

Последствия однократного общего облучения
последствия
доза, бэр
<50
Отсутствие клинических
симптомов
50-100
Незначительное недомогание,
которые обычно быстро проходит
100-200
Лёгкая степень лучевой болезни
200-400
Средняя степень лучевой болезни
400-600
Тяжёлая степень лучевой болезни
> 600
В большинстве случаев наступает
смерть

Степени лучевой
болезни
Острая лучевая
болезнь 1 степени
Средняя – 2 степень
Доза, бэр
100 бэр
Головокружение,
редко тошнота,
отмечается через 2-3
часа после
облучения
200 – 400 бэр
Головная боль,
тошнота, рвота
возникает через 1-2
часа
400-600 бэр
Рвота, повышение t,
головная боль через
30-60 мин
Тяжелая – 3 степень
Крайне тяжелая -4
степень
Симптомы
Более 6оо бэр
Поражение кр сист,
др органов,
интоксикация,
смертельный исход.

1. Ионизирующее излучение 1895 г. – В. Рентген. 1896 г. – А. Беккерель. 1898 г. – М. Кюри и П. Кюри.

Основные достижения в области атомной энергии 1939г. — открытие реакции деления урана И. В. Курчатов обосновал необходимость развития атомной энергетики 1954 г. – первая в мире атомная станция, г. Обнинск. 1957г. — атомный ледокол «Ленин»

Использование энергии атома — — подводные лодки и надводные корабли с ядерными установками, — поиск полезных ископаемых, — применение радиоактивных изотопов в биологии, медицине, в освоении космоса. АЭСАЭС

Атомная энергия: за и против Преимущества атомных электростанций (АЭС) перед тепловыми (ТЭЦ) и гидроэлектростанциями (ГЭС) очевидны: нет отходов, газовых выбросов, нет необходимости вести огромные объемы строительства, возводить плотины и хоронить плодородные земли на дне водохранилищ. При правильной эксплуатации это чистые источники энергии.

Как работает атомная электростанция? АЭС использует энергию атома, которая нагревает воду, превращая ее в пар. Пар вращает турбину.

Авария на АЭС К настоящему времени накоплен большой опыт эксплуатации АЭС в условиях ядерной и радиационной безопасности, веется также опыт ликвидации радиационных инцидентов и аварий и их последствий. К 2011 г. в мире было зарегистрировано 285 серьёзных аварии на АЭС, сопровождавшиеся выбросом радиоактивных веществ. Наиболее крупные из них были в Северной Англии (Уиндскейл, 1957 г.), в США (Три-Майл-Айленд, 1979 г.) и в СССР(Чернобыльская АЭС, 1986 г.), а также Фукусима(Япония 2011 г.) Но, даже несмотря на казалось бы большое количество аварий, атомная энергетика во всем мире относится к отраслям деятельности человека с малой опасностью для жизни, хотя возрастание числа АЭС и участившиеся в последние годы аварийные ситуации делают эту проблему актуальной.

Чернобыльская авария разрушение 26 апреля 1986 года четвёртого энергоблока Чернобыльской атомной электростанции, расположенной на территории Украины. . Разрушение носило взрывной характер, реактор был полностью разрушен, и в окружающую среду было выброшено большое количество радиоактивных веществ. Авария расценивается как крупнейшая в своём роде за всю историю ядерной энергетики, как по предполагаемому количеству погибших и пострадавших от её последствий людей, так и по экономическому ущербу. На момент аварии Чернобыльская АЭС была самой мощной в СССР.

Радиоактивное облако от аварии прошло над европейской частью СССР, Восточной Европой и и Скандинавией. . Примерно 60% радиоактивных осадков выпало на территории Белоруссии и Псковской области. Около 200 000 человек было эвакуировано из зон, подвергшихся загрязнению. o

Последствия аварии Непосредственно во время взрыва на четвёртом энергоблоке погиб один человек, ещё один скончался в тот же день от полученных ожогов. У 134 сотрудников ЧАЭС и членов спасательных команд, находившихся на станции во время взрыва, развилась лучевая болезнь, 28 из них умерли.

Выброс привёл к гибели деревьев рядом с АЭС на площади около 10 км². Результат чернобыльской катастрофы гибель и заражение людей, вывод из производства значительных площадей сельскохозяйственных угодий, остановка промышленных предприятий.

Чернобыль Даже через 21 год после аварии радиационая картина не пришла в норму. Доказательство – следующие кадры:

ПРИПЯТЬ Сейчас Припять это заброшеный, МЁРТВЫЙ город. Он навсегда остался любим в сердцах тех, кто в нём родился, когда-то жил или просто видел его живым.

Авария на Фукусима-1 - крупная радиационная авария, произошедшая 11 марта 2011 года в результате сильного землетрясения в Японии и последовавшего за ним цунами. Они вывели из строя внешние средства электроснабжения и резервные дизельные электростанции, что явилось причиной неработоспособности всех систем нормального и аварийного охлаждения и привело к расплавлению активной зоны реакторов.

ПРИЧИНЫ АВАРИИ(ЦУНАМИ) Возникшее после землетрясения цунами дошло до берегов Японии, самые массовые разрушения произошли на северных островах японского архипелага. Предупреждение о цунами, выданное Японским метеорологическим агентством, было самым серьезным по его шкале опасности: оно оценивалось как «крупное» . Высота волны была разной. Максимум — 40, 5 м.

На Фукусиме используется контайнмент боксового типа, железобетонный. Корпус реактора размещен во внутреннем защитном металлическом корпусе. Также конструкция защитной оболочки рассчитана на максимальное сейсмическое воздействие, определенное для площадки размещения АЭС. Однако, на построенной в 1970-х годах АЭС нет пассивных систем безопасности, не требующих наличия питания для выполнения защитных функций, и отсутствует ловушка расплава. На АЭС Фукусима происходит коррозия оболочек ТВЭЛ в кипящем режиме. А расположение органов системы управления и защиты реактора (СУЗ) на станции- нижнее (при котором необходимо поднять стержни для остановки реактора, для чего нужно электричество).

Что это? «Она не слышна, не видна, не пахнет, не дымит. Определяется только приборами. Не безобидна» .

Что такое радиактивность? Явление самопроизвольного распада химического элемента и превращение его в нуклид. Нуклид –(термин для любых атомов отличающихся составом ядра)-облада- ющий радиоактивностью.

Что такое период полураспада? Число радиоактивных ядер одного типа постоянно уменьшается во времени благодаря их распаду. Скорость распада принято характеризовать периодом полураспада: это время, за которое число радиоактивных ядер определенного типа уменьшится в 2 раза. Для радионуклида с периодом полураспада 1 час это означает, что через 1 час его количество станет меньше первоначального в 2 раза, через 2 часа — в 4, через 3 часа — в 8 раз и т. д. , но полностью не исчезнет никогда. В такой же пропорции будет уменьшается и радиация, излучаемая этим веществом

Что такое ионизирующее излучение? Потоки заряженных и нейтральных частиц, а также электромагнитные волны которые проходя через вещество вызывают в нем ионизацию т. е. превращение нейтральных, устойчивых атомов вещества в неустойчивые, возбужденные частицы.

Характеристика степени опасности излучения Доза излучения (Р) – количество энергии ионизирующего излучения, поглощаемое 1 г вещества. Доза облучения (бэр). 1 бэр = 1 Р

2. ИСТОЧНИКИ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ ИСКУССТВЕННОЕ Ядерное производство Атомные электростанции Ядерно-энергетические установки Специальные военные объекты Медицинская рентгеновская аппаратура Бытовые излучатели. ЗЕМНОЕ Естественные радиоактивны е вещества (радон и др.)ЕСТЕСТВЕННОЕ КОСМИЧЕСКОЕ Звездные взрывы Солнечные вспышки

ВНУТРЕННЕЕВНЕШНЕЕ Источник – вне организма. Чем выше над уровнем моря, тем выше радиация Источник – внутри организма Через дыхательные пути (пыль); Через пищеварительный тракт (пища, вода); Через поврежденную кожу. 3. ОБЛУЧЕНИЕ ЧЕЛОВЕКА

Как защититься от радиации? От источника радиации защищаются временем, расстоянием и веществом. Временем — вследствие того, что чем меньше время пребывания вблизи источника радиации, тем меньше полученная от него доза облучения. Расстоянием — благодаря тому, что излучение уменьшается с удалением от компактного источника (пропорционально квадрату расстояния). Если на расстоянии 1 метр от источника радиации дозиметр фиксирует 1000 мк. Р/час, то уже на расстоянии 5 метров показания снизятся приблизительно до 40 мк. Р/час. Веществом — необходимо стремиться, чтобы между Вами и источником радиации оказалось как можно больше вещества: чем его больше и чем оно плотнее, тем большую часть радиации оно поглотит. Что касается главного источника облучения в помещениях — радона и продуктов его распада, то регулярное проветривание позволяет значительно уменьшить их вклад в дозовую нагрузку. Кроме того, если речь идет о строительстве или отделке собственного жилья, которое, вероятно, прослужит не одному поколению, следует постараться купить радиационно безопасные стройматериалы

Вопросы урока: 1. Виды аварий с выбросом радиоактивных веществ. 2. Характеристика очагов поражений при авариях на АЭС. 3. Последствия радиационных аварий. Домашнее задание: §§ 4. 2 – 4.

Радиационно опасный объект Это объект (в том числе яд. реактор, завод ис -пользующий яд. топливо или перерабатывающий яд. материал, а также место хранения яд. матери- ала и транспортное средство перевозящее яд. материал или источники ионизирующего излуче- ния) при аварии на котором или разрушении ко- торого может произойти облучение

Технические характеристики Аварии на АЭС классифицируются в зависимости от причин отказов оборудования, от механизма развития аварии и масштаба последствий. Различают три типа радиационных аварий на АЭС: локальная, местная и общая. При локальной аварии радиационные последствия ограничиваются одним зданием или сооружением, где создается повышенный уровень внешнего излучения, радиоактивного загрязнения воздуха в рабочих помещениях, а также наружных поверхностей оборудования. Радиационные последствия при местной аварии ограничены зданием и территорией АЭС, где возможно облучения персонала в дозах, выше допустимых. Концентрация радиоактивных веществ в воздухе, а также уровень радиоактивного загрязнения поверхностей помещений и территории превышает регламентируемый. К общим относятся аварии, при которых радиоактивные продукты, выбрасываемые из реактора, распространяются за пределами территории АЭС. В результате возможно облучение населения и радиоактивное загрязнение объектов окружающей среды (почвы, воздуха, растительности).

Виды аварий с выбросом радиоактивных веществ 1. Аварии на АЭС, АЭУ. 2. Аварии на предприятиях. 3. Аварии транспортных средств. 4. Аварии при проведении испытаний. 5. Аварии с боеприпасами

Фазы аварий на радиационно опасных объектах Начальная фаза — период времени предшествующий началу вы -броса радиации в окружающую среду; Ранняя фаза аварии — период выброса радиоактивных веществ в окружающую среду (от неск. часов до нескольких суток); Средняя фаза аварии — период времени отсутствия дополни -тельного поступления радиоактивных веществ в окружающую среду (может длиться от нескольких дней до года после аварии) Поздняя фаза аварии — период возврата к условиям нормаль- ной жизнедеятельности населения (от нескольких недель до де- сятков лет, т. е. до прекращения необходимости в выполнении защитных мер.

Причины аварий на РОО Отказ оборудования из-за несовершенства конструкций или технологического процесса. Ошибочные действия персонала (преступная халатность) Внешние события

Специфические свойства радиоактивных веществ: -отсутствие запаха, цвета, вкуса и других внешних признаков; способны вызывать поражения не только при непосредственном соприкосновении с ним, но и на расстоянии(до сотен метров) от источника загрязне- ния; их поражающие свойства не могут быть уничтожены химически или каким либо другим способом, т. к. радиоактивный распад не зависит от внешних факто- ров, а определяется периодом полураспада данного вещества.

Воздействие радиации на человека Эффекты воздействия радиации на человека обычно делятся на две категории: 1) 1) Соматические (телесные) — возникающие в организме человека, который подвергался облучению. Это: лучевая болезнь, лейкозы, локальные лучевые поражения 2) 2) Генетические — связанные с повреждением генетического аппарата и проявляющиеся в следующем или последующих поколениях, это дети, внуки и более отдаленные потомки человека, подвергшегося облучению. : генные мутации. хромосомные аберрации

Последствия однократного радиационного поражения Доза, бэр Мгновенные симптомы Риск смерти Наступление смерти От 0 до 100 никаких никакого — 100 — 200 Рвота, сокращение числа белых кровяных телец никакого — 200 — 600 То же + выпадение волос, подверженность инфекциям До 80% Через 2 месяца 600 — 1000 То же От 80 до 100% Через 2 месяца Более 1000 То же + сонливость, озноб, жар, понос 100% Менее чем через 2 месяца

Доза облуче ния, рентге н Признаки поражения 50 Признаки поражения отсутствуют 100 При многократном облучении в течение 10- ЗО суток работоспособность не уменьшается. При острых (однократных) облучениях у 1% облученных наблюдаются тошнота и рвота, чувство усталости без серьезной потери трудоспособности 200 При многократном облучении в течение З месяцев работоспособность не уменьшается. При острых (однократных) облучениях дозой 100- 250 Р возникают слабо выраженные признаки поражения (лучевая болезнь 1 степени) 300 При многократном облучении в течение года работоспособность не снижается. При острых (однократных) облучениях дозой 250- 300 Р возникает лучевая болезнь II степени. Заболевания в большинстве случаев заканчиваются выздоровлением

400-7 00 Лучевая болезнь III степени. Сильная головная боль, повышение температуры, слабость, жажда, тошнота, рвота, понос, кровоизлияние во внутренние органы, в кожу и слизистые оболочки, изменение состава крови. Выздоровление возможно при условии своевременного и эффективного лечения. При отсутствии лечения смертность может достигать почти 100% Более 700 Болезнь в большинстве случаев приводит к смертельному исходу. Поражение проявляется через несколько часов - лучевая болезнь 4 степени Более 1000 Молниеносная форма лучевой болезни. Пораженные практически полностью теряют работоспособность и погибают в первые дни облучения

Радиоактивные вещества, попадающие на поверхность продуктов, если они не упакованы, или через щели и неплотности тары, проникают внутрь: в хлеб и сухари - на глубину пор; в сыпучие продукты (муку, крупу, сахарный песок, поваренную соль) - в поверхностные (10- 15 мм) и нижележащие слои в зависимости от плотности продукта. Мясо, рыба, овощи и фрукты обычно загрязняются радиоактивной пылью (аэрозолями) с поверхности, к которой она весьма плотно прилипает. В жидких продуктах крупные частицы оседают на дно тары, а мелкие образуют взвеси. Наибольшую опасность представляет попадание радиоактивных веществ внутрь организма с зараженной ими пищей и водой, причем поступление их в количествах более установленных величин вызывает лучевую болезнь. Поэтому в целях исключения опасного внутреннего облучения организма человека установлены допустимые пределы радиоактивного загрязнения продуктов питания и воды. Их соблюдение необходимо строго контролировать. П р и м е ч а н и е: удельная активность радионуклида -- отношение активности радионуклида в образце к массе образца. Активность радионуклида в образце измеряют в кюри (Ки). 1 Ки 3, 7 1010 ядерных превращений в секунду.

При определении допустимых доз облучения учитывают, что оно может быть однократным или многократным. Однократным считают облучение, полученное за первые четверо суток. Оно может быть импульсивным (при воздействии проникающей радиации) или равномерным (при облучении на радиоактивно-загрязненной местности). Облучение, полученное за время, превышающее четверо суток, считают многократным. Образовавшиеся в процессе аварии ядерной энергетической установки радиоактивные продукты в виде пыли, аэрозолей и других мельчайших частиц оседают на местности. Их разносит ветер, заражая все вокруг. Если запасы продовольствия окажутся не укрытыми или будет нарушена целостность их упаковки, то радиоактивные вещества загрязнят их. Радиоактивные вещества могут быть также занесены в пищу при ее обработке с зараженных поверхностей тары, кухонного инвентаря и оборудования, одежды и рук.

Правила безопасного поведения § 4. 7 при радиационных авариях Вопросы урока: 1. Что необходимо узнать зараннее про- живая вблизи РОО? 2. Дейтвия населения по сигналу опове- щения. 3. Правила безопасности прожива-нии на загрязнённой территории

Факторы радиационной опасности При нахождении личного состава в районе аварийной АЭС необходимо иметь ввиду следующие возможные пути облучения: 1. Внешнее облучение (гамма-, бета-жесткое) и поступление РВ внутрь организма при прохождении первичного газоаэрозольного облака. 2. Внешнее облучение (гамма-) на радиоактивно зараженной местности (РЗМ). Вклад данного фактора в общую дозу облучения на различных этапах после аварии составляет от 30-40% до 80-90%. вешнее облучение является ведущим при правильном использовании средств индивидуальной защиты (СИЗ), а начиная с 2-3 мес после аварии — и без использования СИЗ.

Факторы радиационной опасности 3. Внутреннее облучение (альфа-, бета-, гамма-) за счет ингаляционного поступления радионуклидов при нахождении на РЗМ. Вклад данного фактора в общую дозу облучения зависит от степени РЗМ, радионуклидного состава РВ (особенно наличия альфа-излучателей), времени прошедшего после аварии, характера работы личного состава, использования средств индивидуальной защиты органов дыхания и может составлять до 70%(!!!) в первый месяц, до 40-50% — во второй, до 20-30% — в третий месяц после аварии. 4. Внутреннее облучение при пероральном поступлении радионуклидов с загрязненными пищевыми продуктами и водой. 5. Контактное облучение (бета-, гамма-) при загрязнении кожи и одежды, а также дистанционное бета-облучение кожи от РЗМ.

Оценка радиационной опасности Оценка радиационной обстановки при аварии на АЭС. Радиационная обстановка представляет собой совокупность условий, возникающих в результате загрязнения местности, приземного слоя воздуха и водоисточников, оказывающих влияние на действия войск, аварийно-спасательные работы и жизнедеятельность населения. Оценка наземной радиационной обстановки предусматривает определение масштабов и степени РЗМ и приземного слоя атмосферы с целью определения степени их влияния на действия войск и выбора оптимального режима их деятельности. Радиационная обстановка может быть выявлена и оценена как по результатам прогнозирования последствий разрушения АЭС, так и по данным радиационной разведки.

Что нужно делать при оповещении об аварии на радиационно опасных объектах Включить радио, теле- визор, прослушать сообщение Освободить от продуктов холодильник Вынести ско- ропортящиеся продукты и мусор Выключить газ, электричество, погасить огонь в печи. Взять необходимые вещи Документы и продукты питания. Надеть средства Индивидуальной защиты Следовать на сборный пункт

При отсутствии убежища или средств защиты Ждите информацию органов ГОЧС Отойдите от окон ЙОД Проведите йодную профилактику Защитить продукты питания; сделать запас воды Вкл. Радио, телевизор, прослушать сообщение Закрыть окна, двери Загерметизировать помещение

Проведение йодной профилактики Одна из самых важных медицинских мер по предупреждению поражения населения радиоактивными выбросами в первое время. Ее проведение преследует цель не допустить — поражения щитовидной железы. В облаке радиоактивных продуктов содержится значительно количество радиоактивного йода (период полураспада 8 дней). Попадая в организм человека, он сорбируется щитовидной железой и поражает ее.

Наиболее эффективный метод защиты при этом -- прием внутрь лекарственных препаратов стабильного йода (йодная профилактика - таблетки или порошок йодистого калия. Максимального защитного эффекта достигают при заблаговременном или одновременном с поступлением радиоактивного йода приеме стабильного аналога. Защитный эффект препарата резко уменьшается в случае его приема спустя уже 2 ч после поступления в организм радиоактивного йода. Однако даже через 6 ч после разового поступления радиоактивного йода прием препарата стабильного йода может уменьшить дозу облучения щитовидной железы примерно вдвое Однократный прием 100 мг стабильного йода обеспечивает защитный эффект в течение 14 ч. В условиях длительного воздействия радиоактивного йода на организм человека необходимы повторные приемы препаратов стабильного йода один раз в сутки в течение всего этого срока, но не более 10 суток для взрослых и не более 2 суток для беременных женщин и детей до 3 лет.

Йодистый калий принимают в следующей дозировке: взрослое население - 130 мг; дети до трехлетнего возраста - 65 мг. Препарат принимают после еды вместе с киселем, чаем или водой.

ПОДГОТОВКА К ВОЗМОЖНОЙ ЭВАКУАЦИИ Сбор документов, денег, личных вещей, продуктов, лекарств, средств индивидуальной защиты, в том числе подручных (накидок, плащей из синтетических пленок, резиновых сапог, бот, перчаток). Вещи и продукты уложите в чемоданы или рюкзаки. Чемоданы и рюкзаки затем оберните синтетической пленкой.

Умелое и своевременное ИСПОЛЬЗОВАНИЕ СРЕДСТВ ИНДИВИДУАЛЬНОЙ ЗАЩИТЫ позволяет практически полностью исключить попадание радиоактивных веществ внутрь организма через органы дыхания. Для их защиты используют противогазы гражданские ГП-5, ГН-? , детские ПДФ-Д, ПДФ-Ш, ПДФ-2Д, ПДФ-2Ш, а также респираторы «Лепесток» , Р-2Д, ватно-марлевые повязки, противопыльные тканевые маски ПТМ-1. Д ля защиты от радиоактивного йода используют противогазы гражданский ГП-7 и детские ПДФ-2Д, ПДФ-2Ш. При выпадении радиоактивных веществ на местности, при всех видах пылеобразования (сильный ветер, прохождение транспорта, особенно по грунтовым дорогам, при проведении сельскохозяйственных работ) на радиационно загрязненной местности необходимо обязательно использовать средства защиты органов дыхания. П опадание в больших количествах радиоактивных веществ на открытые участки кожи может вызвать ее поражение -- кожные ожоги. Во избежание такого поражения необходимо использовать плащи с капюшонами, накидки, комбинезоны, резиновую обувь, перчатки. Можно усилить защитные свойства обычной одежды, сделав ее более герметичной: используя различные клинья, клапаны или пропитав водно-эмульсионной смесью (2 л горячей воды, 250-З 00 г измельченного мыла, 0, 5 л минерального или растительного масла).

ПРИ ПОСТУПЛЕНИИ СООБЩЕНИЯ ОБ ЭВАКУАЦИИ На улице нужно находиться в средствах защиты органов дыхания и кожи, по возможности не поднимать пыль, стараться не ставить чемоданы или рюкзаки на землю, а если придется это сделать, нужно использовать чистую газету или любую другую подстилку. Избегайте движения по высокой траве и кустарнику, без надобности не садитесь и не прикасайтесь к местным предметам. Во время движения не пейте, не принимайте пищу и не курите. Перед посадкой в автомобиль проведите дезактивацию средств защиты, одежды и вещей (путем их осторожного обтирания или обметания), а также частичную санитарную обработку открытых участков тела (обмыванием или обтиранием влажной салфеткой). По прибытии в район размещения эвакуированных пройдите радиационный контроль, сдайте средства индивидуальной защиты и предметы одежды, вымойтесь с мы лом, особенно тщательно промывая части тела, покрытые волосяным покровом. После прохождения повторного радиационного контроля наденьте чистое белье, одежду и обувь, полученные на пункте выдачи.

Лечебно-профилактические работы в очагах Этап 1 -до 15 мин после аварии. Действует персонал смены на рабочем месте. Медицинская помощь пострадавшим оказывает в порядке само- и взаимопомощи. Эвакуация пострадавших на здравпункт проводится по заранее определенным путям. Для оказания помощи используются аптечка и носилки. Уточняется характер аварии. Обученный персонал локализует зону аварии и открывает дуги к эвакуации. Вступает в действие схема оповещения об аварии, захватывающая медицинские учреждения и медперсонал

Лечебно-профилактические работы в очагах Этап 2 — 15-30 мин. Проходит на ближайшем здравпункте. Неотложная помощь оказывается фельдшером. Проводится сортировка пораженных с выделением по клиническим признакам 2 групп — нуждающихся в неотложной медицинской помощи и не нуждающихся в таковой. Как второстепенное мероприятие осуществляется сортировка по данным физической дозиметрии с выделением пораженных в дозе до 600 рад, более 1200 рад (порог радиационного ожога) и промежуточных.

Лечебно-профилактические работы в очагах 3 этап — 30 мин -З часа Этап действий в приемном покое, желательно специально оборудованном и оснащенном. В принципе спецприемное отделение должно иметь: раздевалку с комнатой для упаковки в целлофан «грязных» предметов помещение (пост) для первичной радиометрии, душевую для санитарной обработки, желательно на несколько кабин и со столом для обработки лежачих больных; помещение (пост) для повторной радиометрии; комнату для врачебного обследования и оказания неотложной помощи.

Контроль безопасности продуктов питания Уменьшения содержания радионуклидов в пище можно достигать и правильной технологией ее приготовления. Так, при варке мяса 50- б 0% содержащихся в нем радионуклидов переходят в бульон в первые 10 мин. Сливом первого бульона можно соответственно уменьшить их содержание в приготовляемой пище. Но даже с учетом изложенных рекомендаций необходимо стараться использовать для питания только те продукты, которые были проверены на содержание радионуклидов и разрешены к употреблению. Все это в полной мере относится и к воде. Воду необходимо употреблять из артезианских скважин (на путях доставки воды должны быть полностью исключены возможности ее загрязнения). Если вы предполагаете, что радиоактивные вещества все же попали внутрь организма, нужно принять 25-З 0 г активированного угля и через 15- 20 мин промыть желудок двумя-тремя литрами воды. Активированный уголь

При защите организма от р/веществ необходимо учитывать: 1. В белке яиц цезия больше, чем в желтке 2. По степени накопления радиоактивного йода растения распределяются следующим образом (в порядке убыва- ния: — огурцы -пшеница — картофель –свёкла – капуста –ячмень В фазе созревания растений степень задержки ими такого йода значительно возрастает.

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

АВАРИИ НА РАДИАЦИОННО ОПАСНЫХ ОБЪЕКТАХ И ИХ ВОЗМОЖНЫЕ ПОСЛЕДСТВИЯ.

В нашей стране на многих объектах экономики используются радиоактивные вещества. В России в настоящее время имеются: 1.10 атомных электростанций(30 энергоблоков). 2.113 исследовательских ядерных установок. 3.12 промышленных предприятий топливного цикла. 4. 9 атомных судов с объектами их обеспечения. 5. 13 тысяч других предприятий где используются радиоактивные вещества.

Ионизирующее излучение создаётся при радиоактив- ном распаде, ядерных превращениях, торможении заряженных частиц в веществе и образует при взаимо- действии со средой ионы разных знаков. Радиационно опасный объект – это объект, на котором хранят, перерабатывают или транспортируют радио- активные вещества, при аварии на котором или при аварии на котором или при его разрушении может произойти облучение ионизирующим излучением людей или радиоактивное загрязнение окружающей среды. Под радиоактивным загрязнением окружающей среды понимается присутствие радиоактивных веществ на поверхности местности, в воздухе, в теле человека в количестве, превышающем уровни, установленные нормами радиационной безопасности.

К радиационно опасным объектам относятся: 1.Предприятия ядерного топливного цикла(предпря- тия урановой и радиохимической промышленности, места переработки и захоронения радиоактивных отходов). 2.Атомные станции(атомные электрические станции) (АЭС), атомные теплоэлектроцентрали (АТЭЦ), атомные станции теплоснабжения(АТС). 3.Объекты с ядерными энергетическими установками (корабельными, космическими и войсковыми атом- ными электростанциями). 4. Ядерные боеприпасы и склады для их хранения.

В Российской Федерации восемь из десяти действую- щих АЭС: Обнинская(Калужская область). 2.Ленинградская. 3.Курская. 4.Смоленская. 5.Калининская. 6.Нововоронежская. 7.Балаклавская(Саратовская область). 8.Ростовская.

В период с 1957 года по 2011год в мире произошли следующие аварии на АЭС: 1957г. в Великобритании (Виндскейл). 2. 1979г. в США (Три-Майл-Айленд). 3.1986г. в СССР (Чернобыль – Украина). 4.2011г.(11марта) в Японии (Фукусима). Авария на Чернобыльской АЭС

Международная шкала событий на АЭС для оценки серьёзности происшедшего, быстрого оповещения и выбора адекватных мер безопасности. Кате- гория событие происшествие Внешние последствия и меры безопасности примеры Авария 7 Глобальная авария Разрушение реактора и Выброс в окружающую среду значительной доли радиоактивных продуктов Возможность острых лучевых поражений и последующее влияние на здоровье населения на значительных территориях более чем одной страны Чернобыль, СССР, 26.04. 1986г. 6 Тяжёлая авария Значительное разруше-ние активной зоны с выбросом радиоактив- ных продуктов Возможность влияния на здоровье населения. Необходимость частичной эвакуации. Виндскейл, Великобритания, 1957г. 5 Авария с риском для окру- жающей среды. Разрушение части активной зоны с выбросом радиоактивных продуктов Возможность влияния на здоровье населе6ния.В отдельных случаях частичное проведение противоаварийных мер(йодная профилактика) Три-Майл-Айленд, США 1979г. 4 Авария в пределах АЭС Частичное разрушение активной зоны с выбросом радиоактивных продуктов в пределах помещений АЭС Облучение населения дозами не выше 1бэр.Меры по защите не требуются.Возможность острых лучевых поражений персонала Сант-Лаурент, Франция, 1980г.

Последствия однократного общего облучения доза, бэр последствия 600 В большинстве случаев наступает смерть

3 Серьёзное происшествие Нарушение нормальной работы оборудования, приведшее к загрязне- нию АЭС и небольшому выбросу радиоактивных веще-ств в окружающую среду Облучение населения не более нормы.Меры по защите не тре- буются.Возможно переоблучен-ие персонала дозами до5бэр Ванделлос, Испания, 1989г. 2 Происшествие средней тяжести Отказы оборудования, не приведшие к нарушениям безопасности АЭС - - 1 Незначительное происшествие Функциональные отключения, которые не представляют какого-либо риска,но указывают на недостатки по безопасности - - 0 Не имеют значения для безопасности Отклонение режимов без превышения пре-делов безопасности - - Происшествия

Лучевая болезнь возникает при воздействии на организм ионизирующих излучений в дозах, превыша- ющих предельно допустимых. Острая лучевая болезнь лёгкой(I) степени развивается при кратковременном облучении всего тела в дозе, превышающей 100бэр. Она сопровождается головокружением, редко – тошнотой, отмечается через 2-3ч после облучения. Острая лучевая болезнь(II) степени развивается при воздействии ионизирующего излучения в дозе от 200 до 400бэр. Первичная реакция (головная боль, тошнота, иногда, иногда рвота) возникает через 1-2ч. Острая лучевая болезнь тяжёлой(III) степени развивается при воздействии ионизирующего излучения в дозе от 4 00 до 6 00бэр. Первичная реакция возникает через 30-60мин и резко выражена (повторная рвота, повышение температуры тела, головная боль).

Острая лучевая болезнь крайне тяжёлой (IV) степени Отмечается при воздействии ионизирующего излуче-ния в дозе более 600бэр. Симптомы обусловлены глубоким поражением кроветворной системы, приобретают первостепенное значение поражения других органов(кишечника, кожи, головного мозга) и интоксикация(состояние организма, вызванное воздействием токсических веществ). Смертельные исходы практически неизбежны.

Атомные станции это потенциально опасные объекты.


Слайд 2

Радиационно опасные объекты

Радиационно опасные объекты (РОО) - это АЭС, испытательные ядерные взрывы; атомные суда, корабли, подводные лодки, реакторы в научно-исследовательских центрах, примышленные установки по дефектоскопии.

За период с 1971 года в мире на АЭС произошло около 200 аварийных ситуаций различного уровня.

Уровень 7 - Глобальная авария. Чернобыль, СССР, 1986г.Уровень 6 - Тяжёлая авария. Виндскейл, Англия, 1957г.Уровень 5 - Авария с риском для окружающей среды Три-Майл-Айленд, США, 1979г.Уровень 4-Авария в пределах АЭС. Сант-Лоурент, Франция, 1980г.

Слайд 3

Справка

За 5 лет до Чернобыльской катастрофы на АЭС в СССР было более 1000 аварийных остановок энергоблоков.На Чернобыльской АЭС таких остановок было - 104, из них 35 - по вине персонала.

После катастрофы на Чернобыльской АЭС: госпитализировано - 500 человек; погибло сразу после аварии - 28 человек; заболели тяжёлой формой лучевой болезни -272 человека.

За 10 лет умерло 4000 ликвидаторов, 70000 человек стали инвалидами, 3 млн. человек испытали влияние этой катастрофы. Уровень радиоактивного загрязнения в Брянской области составил - до 40 Ки/кв. км.В четырёх областях, примыкающих к опасной зоне - 5 Ки/км2В 16 областях РФ уровень загрязнения - более 1 Ки/кв. км.

Слайд 4

Ядерный реактор

Ядерные реакторы - это устройства, в которых осуществляется управляемая реакция деления ядер урана и при этом кинетическая энергия превращается в тепловую. При делении ядер урана высвобождается огромная энергия:

Образование критической массы в реакторе исключено, поэтому атомный взрыв реактора практически невозможен. Однако может произойти тепловой взрыв, вызывающий разрушение реактора и радиоактивный выброс с последующим заражением местности. Загрузка реактора на три года составляет 100 и более кг урана.

Авария на реакторе наиболее вероятна при неустановив-шемся режиме работы (при пуске и остановке.)

Слайд 5

Ядерный реактор (продолжение)

Ядерный реактор АЭС содержит ядерное горючее (1)- урановые тепловыделяющие элементы (ТВЛЭы), распределённые в активной зоне (2); замедлитель (3)- графит, беррилий; (4)- тепловую колонку; управляющие стержни (5), поглощающие нейтроны (кадмий, бористая сталь); отражатель нейтронов (6); внешнюю защиту (7).

Слайд 6

Работа АЭС

За счёт ядерной энергии урановые стержни разогреваются и отдают своё тепло прямому или промежуточному теплоносителю, который превращается в пар. Пар подаётся на турбогенератор и вырабатывается электроэнергия.

В одноконтурной АЭС контура теплоносителя (вода) и рабочего тела (пар) не разделены. Такая схема осуществлена на Курской, Смоленской, Чернобыльской, Ленинградской АЭС. В двухконтурных АЭС контура теплоносителя и рабочего тела разделены (Кольская, Калининская АЭС, а также АЭС Болгарии, Финляндии, Канады.

Радиационная авария - это непредвиденная ситуация, вызванная нарушением нормальной работы АЭС с выбросом радиоактивных веществ (РВ) и ионизирующих излучений (ИИ).

Слайд 7

Особенности аварий на АЭС

Авария с выходом радиоактивных веществ за пределы АЭС может возникнуть без разрушения реактора и с разрушением реактора (катастрофическая).

1. Авария без разрушения реактора возникает в результате оплавления тепловыделяющих элементов (ТВЭЛов) и выброса пара с аэрозольными радиоактивными веществами (ксенон, криптон, йод и др.) через высокую вентиляционную трубу АЭС. Время выброса составляет примерно 20 - 30 мин.

Происходит заражение не только воздуха, но и местности по пути распространения радиоактивного облака (мелкодисперсные РВ). Основную дозу облучения люди получают за счёт внутреннего облучения (99%), а от внешнего облучения - 1%. Накопление дозы происходит примерно в течение одного часа за время прохождения радиоактивного облака.

Слайд 8

Авария на АЭС с выбросом радиоактивныхвеществ без разрушения реактора

Слайд 9

Особенности аварий на АЭС (продолжение)

2. Катастрофическая авария с разрушением реактора происходит вследствие теплового взрыва. Продукты деления выбрасываются от реактора на высоту до 1,5 км.

В связи с тем, что при работе реактора в нём происходит накопление долгоживущих радионуклидов, заражение ими местности происходит на очень длительное время. Например, период полураспада стронция 90 составляет 26 лет, цезия 137 - 30 лет, а углерода 14 - 5700 лет.

Основную роль в формировании радиационной обстановки будут играть изотопы инертных газов - криптона и ксенона, а также изотопы йода, цезия и др.

В результате такой аварии на местности формируется радиоактивный след, причём заражение местности происходит неравномерно и носит пятнистый характер.

Слайд 10

Катастрофическая авария на АЭС (продолжение)

На сформированном радиоактивном следе основной источник радиационного воздействия - внешнее облучение от выпавших радиоактивных веществ. Поступление радиоактивных веществ внутрь организма возможно с радиоактивно загрязнёнными продуктами питания и водой. Контактное облучение происходит за счёт заражения кожных покровов и одежды.

Слайд 11

Ионизирующие излучения. Действие на человека

Человек подвергается воздействию ионизирующих излучений(ИИ) при работе с радиоактивными веществами (РВ), при авариях на АЭС, ядерных взрывах, на промышленных и транспортных объектах, при влиянии техногенного фона.

Ионизирующие излучения, взаимодействуя с веществом, создают в нём положительно и отрицательно заряженные атомы - ионы. В результате этого свойства вещества в значительной степени изменяются.

Основная характеристика РВ это активностьА - число самопроизвольных ядерных превращенийdN за малый промежуток времени dt.

где А - активность, измеряемая в беккерелях(БК);1 БК равен одному ядерному превращению всекунду. Внесистемная единица Кюри (Ки).

Слайд 12

Виды ионизирующих излучений

1. Жёсткие электромагнитные рентгеновские Р и гамма γ излучения. Эти излучения имеют большую проникающую способность.

2. Корпускулярные (неэлектромагнитные) излучения.

Поток электронов, заряд (-), ионизирующая способность бета-излучения ниже, а проникающая способность выше, чем альфа-частиц.

Нейтронное излучение является потоком электронейтральных частиц ядра - нейтронов.Имеет значительную проникающую способность и создаёт высокую степень ионизации.

Поток ядер гелия, заряд (+), малая проникающая способность, высокая степень ионизации.

Слайд 13

Дозовые характеристики

1. Экспозиционная доза Х (Кл/кг) оценивает эффект ионизации воздуха рентгеновским и гамма- излучением: где Q - сумма электрических зарядов ионов одного знака, Кл;m - объём воздуха массой 1 кг.

Внесистемная единица экспозиционной дозы - 1 рентген.

Мощность экспозиционной дозы Р (Р/ч, мР/ч, мкР/ч): Эта величина для природного фона составляет: 10 - 20 мкР/ч

Слайд 14

Дозовые характеристики (продолжение 1)

2. Поглощённая доза D- это отношение энергии ионизирующего излучения Е (Дж) к массе вещества mв(кг):

Единица поглощённой дозы - 1 Грей (Гр) = 1 Дж/кг = 100 рад, где рад - внесистемная единица. Для биологической ткани: 1 Р = 0,95 рад

Экспозиционную дозу в рентгенах и поглощённую дозу в ткани в радах можно считать совпадающими.

Слайд 15

Дозовые характеристики (продолжение 2)

3. Эквивалентная доза H(Зиверт, Зв) учитывает разный биологический эффект ионизирующих излучений. Она характеризуется произведением поглощённой дозыD на коэффициент относительной биологической активности (коэффициент качества излучения К).

Внесистемная единица эквивалентной дозы - бэр (биологический эквивалент рада). 1 бэр = 0,01 Зв

Коэффициент качества излучения равен для гамма- и бета-излуче-ния - 1, нейтронного излучения - 10,альфа-частиц - 20.

Для гамма-излучения эквивалентная доза равна поглощённой.

Слайд 16

Воздействие ионизирующих излучений на человека

Разнообразные проявления поражающего действия ионизирующих излучений на человека называют лучевой болезнью. Ионизация живой ткани приводит к разрыву молекулярных связей и изменению химической структуры соединений. Нарушаются биохимические процессы и обмен веществ. Тормозятся функции кроветворных органов, происходит увеличение числа белых кровяных телец (лейкоцитов), расстройство деятельности желудочно-кишечного тракта, истощение организма.

Облучение 0,25-0,5 Зв (25-50Р для гамма-излучения) - незначитель-ные изменения состава крови.

  • 0,8 - 1 Зв (80-100Р) - начало развития лучевой болезни.
  • 2,7 - 3,0 Зв (270-300Р) - острая лучевая болезнь.
  • 5,5 - 7,0 Зв (550-700Р) - летальный исход.
  • Слайд 17

    Нормирование ионизирующих излучений

    Допустимые дозы ионизирующих излучений регламентируются Нормами радиационной безопасности(НРБ).

    • Категория А - персонал радиационных объектов.
    • Категория Б - ограниченная часть населения, которая может подвергаться ионизирующим излучениям.
    • Категория В - остальное население (не нормируется).

    1 группа критических органов - всё тело, красный костный мозг;2 группа - мышцы, щитовидная железа и др.; 3 - костная ткань и др.

    Например, при общем облучении для группы А норма 50 мЗв/год (5Р/год); для группы Б норма 10 мЗв/год (1Р/год); для группы В - 0,5Р/год.

    Слайд 18

    Защита от электромагнитных излучений

    Классификация средств защиты

    1. Профессиональный медицинский отбор. К работе с установками электромагнитных излучений не допускаются лица моложе 18 лет, а также с заболеваниями крови, сердечно-сосудистой системы, глаз.

    2. Организационные меры: защита временем и расстоянием; знаки безопасности.

    3. Технические средства, направленные на снижение уровня ЭМП до допустимых значений (экраны отражающие и поглощающие, плоские, сетчатые, оболочковые).

    4. Средства индивидуальной защиты (комбинезоны, капюшоны, халаты из металлизированной ткани, специальные очки со стёклами, покрытыми полупроводниковым оловом).

    Слайд 19

    Защита от электромагнитных излучений диапазонов РЧ и СВЧ

    1. Интенсивность электромагнитных излучений I (вт/м2) от источника мощностью Рист (вт) уменьшается с увеличением расстояния R по зависимости:

    Поэтому рабочее место оператора должно быть максимально удалено от источника.

    2. Отражающие экраны изготовляют из хорошо проводящих металлов: меди, алюминия, латуни, стали. ЭМП создаёт в экране токи Фуко, которые наводят в нём вторичное поле, препятствующее проникновению в материал экрана первичного поля. Эффективность экранирования L (дБ) определяется: где I, I1 - интенсивность ЭМП без экрана и с экраном; L = 50 - 100 дБ.

    Слайд 20

    Защита от электромагнитных излучений диапазонов РЧ и СВЧ (продолжение)

    3. Иногда для экранирования ЭМП применяют металлические сетки. Сетчатые экраны имеют меньшую эффективность, чем сплошные. Их используют, когда требуется уменьшить интенсивность (плотность потока мощности) на 20 - 30 дБ (в 100 - 1000 раз).

    4. Поглощающие экраны выполняют из радиопоглощающих материалов (резина, поролон, волокнистая древесина).

    5. Многослойныеэкраны состоят из последовательно чередующихся немагнитных и магнитных слоёв. В результате осуществляется многократное отражение волн, что обусловливает высокую эффективность экранирования.

    Слайд 21

    Защита от ионизирующих излучений

    Различают внешнее и внутреннее облучение.

    1. Защита от внешнего облучения осуществляется установкой стационарных или переносных экранов, применением защитных сейфов, боксов. Для сооружения стационарных средств защиты используют бетон, кирпич. В переносных или передвижных экранах в основном используется свинец, сталь, вольфрам, чугун.

    2. Очень опасным является внутреннее облучение альфа- и бета- частицами, проникающими в организм с радиоактивной пылью. Для защиты используют следующие меры: работа с радиоактивными веществами осуществляется в вытяжных шкафах или боксах с усиленной вентиляцией, применяются СИЗ (респираторы, противогазы, резиновые перчатки), выполняется постоянный дозиметрический контроль, а также дезактивация одежды и поверхности тела.

    Слайд 22

    Экранирование источников электромагнитных излучений.

    а - индуктора; б - конденсатора

    Слайд 23

    Средства защиты от ионизирующих излученийа - экраны; б - защитные сейфы; в - бокс.

    Слайд 24

    Электромагнитные излучения радиочастот

    Природные источники электромагнитных полей (ЭМП):

    Атмосферное электричество, излучение солнца,электрическое и магнитное поля Земли и др.

    Техногенные источники ЭМП:

    Трансформаторы, электродвигатели,телеаппаратура, линии электропередач,компьютеры, мобильные телефоны и др.

    Процесс распространения ЭМП имеет характер волны, при этом в каждой точке пространства происходят гармонические колебания напряжённости электрического E (В/м) и магнитного H (А/м) полей.

    Общие сведения

    Квантовой моделью описывается процесс поглощения излучений.

    Векторы E и H взаимно перпендикулярны. В воздухе E = 377 H.

    Слайд 25

    Общие сведения по электромагнитнымизлучениям (продолжение)

    Длина волны λ (м) связана со скоростью распространения колебаний с (м/с) и частотой f(Гц) соотношением: где с = 3*108 м/с - скорость распространения электромагнитных волн в воздухе.

    Направление движения потока энергии определяется вектором Умова-Пойтинга - П:

    Спектр электромагнитных колебаний делят на три участка:

    • Радиоизлучения
    • Оптические
    • Ионизирующие
  • Слайд 26

    Характеристики радиоизлучений

    Диапазон электромагнитных колебаний - радиоизлучений делят на радиочастоты (РЧ) и сверхвысокие частоты (СВЧ).

    Радиочастоты подразделяют на поддиапазоны: Длинные волны (ДВ).Средние волны (СВ).Короткие волны (КВ).Ультракороткие волны (УКВ).

    Слайд 27

    Характеристики радиоизлучений продолжение)

    В районе источника ЭМП выделяют ближнюю зону (индукции) и дальнюю зону (волновую).

    Зона индукции находится на расстоянии R < λ/6, а волновая зона - на расстоянии R > λ/6 (м).

    В ближней зоне бегущая волна ещё не сформировалась, а ЭМПхарактеризуется векторами Eи H.

    В волновой зоне ЭМП характеризуется интенсивностью I (вт/м2), которая численно равна величине П.

    Например, в диапазоне РЧ при длине волны 6м граница зонлежит на расстоянии 1м от источника ЭМП, а в диапазонеСВЧ при длине волны 0,6м - на расстоянии 0,1м от источника.

    Интенсивность ЭМП убывает обратно пропорционально R2.

    Слайд 28

    Воздействие ЭМП на человека.Нормирование

    1. ЭМП вызывает повышенный нагрев тканей человека, и если механизм терморегуляции не справляется с этим явлением, то возможно повышение температуры тела. Тепловой порог составляет 100 вт/м2.. Тепловое воздействие наиболее опасно для мозга, глаз, почек, кишечника. Облучение может вызвать помутнение хрусталика глаза (катаракту).

    2. Под действием ЭМП изменяются микропроцессы в тканях, ослабляется активность белкового обмена, происходит торможение рефлексов, снижение кровяного давления, а в результате - головные боли, одышка, нарушение сна.

    Нормы устанавливают допустимые значения напряжённости E (в/м) в диапазоне РЧ в зависимости от времени облучения отдельно для профессиональной и непрофессиональной деятельности, а в диапазоне СВЧ нормируют интенсивность I (вт/м2).

    Слайд 29

    Факторы отрицательного воздействия компьютера на человека

    • Электромагнитные излучения
    • Электрические поля
    • Гиподинамия
  • Слайд 30

    Последствия регулярной длительной работы на ПК без ограничения по времени и перерывов

    1. Заболевания органов зрения - 60 %2. Болезни сердечно- сосудистой системы - 60%3. Заболевания желудка - 40%4. Кожные заболевания - 10%5. Компьютерная болезнь (синдром стресса оператора) - 30%.

    Санитарные нормы СанПин 2.2.2. 542-96 устанавливают предельные значения напряжённости электрического и магнитного поля при работе на ПК.

    Минимальноерасстояние отглаз до экрана-не менее 50см

    Длительность работы на ПК без перерыва - не более 2 часов.Длительность работы на ПК преподавателей - не более 4 часов в день.Длительность работы на ПК студентов - не более 3 часов в день.В перерывах - упражнения для глаз и физкультпауза.

    Посмотреть все слайды