Что такое правильный многогранник. Правильные многогранники

В школьной программе, к сожалению, сферическую геометрию и геометрию Лобачевского не изучают. Тем временем, их изучение совместно с Евклидовой геометрией, позволяет глубже понять происходящее с объектами. Например, понять связь правильных многогранников с разбиениями сферы, разбиениями плоскости Евклида и разбиениями плоскости Лобачевского.
Знания геометрии пространств постоянной кривизны помогает подниматься над трёхмерием и выявлять многогранники в пространствах размерности 4 и выше. Вопросы нахождения многогранников, нахождения разбиений пространств постоянной кривизны, вывода формулы двугранного угла правильного многогранника в n-мерном пространстве - так тесно переплетены, что выносить всё это в название статьи оказалось проблематично. Пусть в центре внимания будут, всем понятные, правильные многогранники, хотя они не только результат всех выводов, но и, одновременно, инструмент для постижения пространств высших размерностей и равномерно искривлённых пространств.

Для тех кто не знает (забыл) сообщаю (напоминаю), что в привычном нам трёхмерном Евклидовом пространстве всего пять правильных многогранников:

1. Тетраэдр: 2. Куб: 3. Октаэдр: 4. Додекаэдр: 5. Икосаэдр:






В трёхмерном пространстве правильным многогранником называется выпуклый многогранник, у которого все вершины равны между собой, все рёбра равны между собой, все грани равны между собой и грани являются правильными многоугольниками.

Правильный многоугольник - это выпуклый многоугольник, у которого все стороны между собой равны и все углы между собой равны.

Вершины равны между собой означает, что количество рёбер и количество граней подходящих к каждой вершине одинаковое и подходят они под одинаковыми углами, в каждой вершине.

В такой записи наши многогранники получат обозначения:
1. Тетраэдр {3, 3},
2. Куб {4, 3},
3. Октаэдр {3, 4},
4. Додекаэдр {5, 3},
5. Икосаэдр {3, 5}
Например, {4, 3} - куб имеет 4 угольные грани, в каждой вершине сходится по 3 таких грани.
У октаэдра {3, 4} наоборот, грани 3 угольные, сходятся по 4 штуки в вершине.
Таким образом символ Шлефли полностью определяет комбинаторное строение многогранника.

Почему правильных многогранников всего 5? Может быть их больше?

Чтобы сполна дать ответ на этот вопрос, нужно сначала получить интуитивное представление о геометрии на сфере и на плоскости Лобачевского. Тем у кого такого представления ещё нет постараюсь дать необходимые объяснения.

Сфера

1. Что такое точка на сфере? Думаю, что всем интуитивно понятно. Мысленно не сложно представить точку на сфере.

2. Что такое отрезок на сфере? Берём две точки и соединяем их кратчайшим расстоянием на сфере, получится дуга, если смотреть на сферу со стороны.

3. Если продолжить этот отрезок в обе стороны, то он замкнётся и получится окружность. При этом плоскость окружности содержит центр сферы, это следует из того, что две исходные точки мы соединили кратчайшим, а не произвольным, расстоянием. Это со стороны она выглядит, как окружность, а в терминах сферической геометрии это прямая, так как была получена из отрезка, продолжением до бесконечности в обе стороны.

4. И, наконец, что такое треугольник на сфере? Берём три точки на сфере и соединяем их отрезками.

По аналогии с треугольником можно нарисовать произвольный многоугольник на сфере. Для нас принципиально важно свойство сферического треугольника, заключающееся в том, что сумма углов у такого треугольника больше 180 градусов, к которым мы привыкли в Евклидовом треугольнике. Более того, сумма углов у двух различных сферических треугольников различна. Чем больше треугольник, тем БОЛЬШЕ у него сумма углов.

Соответственно, появляется 4-й признак равенства треугольников на сфере - по трём углам: два сферических треугольника равны между собой, если у них соответствующие углы равны.

Для простоты саму сферу проще не рисовать, тогда треугольник будет выглядеть немного раздутым:

Сферу ещё называют пространством постоянной положительной кривизны. Кривизна пространства как раз и приводит к тому, что кратчайшим расстоянием является дуга, а не привычный нам прямолинейный отрезок. Отрезок как бы искривляется.

Лобачевский

Теперь, когда мы познакомились с геометрией на сфере, понять геометрию на гиперболической плоскости, открытую великим русским учёным Николаем Ивановичем Лобачевским, будет тоже не сложно, так как тут всё происходит аналогично сфере, только «наизнанку», «наоборот». Если дуги на сфере мы проводили окружностями, с центром внутри сферы, то теперь дуги надо проводить окружностями с центром за пределами сферы.

Приступим. Плоскость Лобачевского будем представлять в интерпретации Пуанкаре II (Жюль Анри́ Пуанкаре́, великий французский учёный), эту интерпретацию геометрии Лобачевского ещё называют диском Пуанкаре.

1. Точка в плоскости Лобачевского. Точка - она и в Африке точка.

2. Отрезок на плоскости Лобачевского. Соединяем две точки линией по кратчайшему расстоянию в смысле плоскости Лобачевского.

Кратчайшее расстояние строится следующим образом:

Надо провести окружность ортогональную диску Пуанкаре, через заданные две точки (Z и V на рисунке). Центр этой окружности будет находиться всегда за пределами диска. Дуга соединяющая исходные две точки будет кратчайшим расстоянием в смысле плоскости Лобачевского.

3. Убрав вспомогательные дуги, получим прямую E1 - H1 в плоскости Лобачевского.

Точки E1, H1 «лежат» на бесконечности плоскости Лобачевского, вообще край диска Пуанкаре - это всё бесконечно удалённые точки плоскости Лобачевского.

4. И наконец, что такое треугольник в плоскости Лобачевского? Берём три точки и соединяем их отрезками.

По аналогии с треугольником, можно нарисовать произвольный многоугольник на плоскости Лобачевского. Для нас принципиально важно свойство гиперболического треугольника, заключающееся в том, что сумма углов у такого треугольника всегда меньше 180 градусов, к которым мы привыкли в Евклидовом треугольнике. Более того, сумма углов у двух различных гиперболических треугольников различна. Чем больше треугольник по площади, тем МЕНЬШЕ у него сумма углов.

Соответственно, тут тоже имеет место 4-й признак равенства гиперболических треугольников - по трём углам: два гиперболических треугольника равны между собой, если у них соответствующие углы равны.

Для простоты сам диск Пуанкаре иногда можно не рисовать, тогда треугольник будет выглядеть немного «усохшим», «сдутым»:

Плоскость Лобачевского (и вообще пространство Лобачевского любой размерности) ещё называют пространством постоянной ОТРИЦАТЕЛЬНОЙ кривизны. Кривизна пространства как раз и приводит к тому, что кратчайшим расстоянием является дуга, а не привычный нам прямолинейный отрезок. Отрезок как бы искривляется.

Правильные разбиения двумерной Сферы и правильные трёхмерные многогранники

Всё сказанное про сферу и плоскость Лобачевского относится к двумерию, т.е. поверхность сферы - двумерна. Какое это имеет отношению к трёхмерию, указанному в заголовке статьи? Оказывается, каждому трёхмерному правильному Евклидову многограннику взаимно однозначно соответствует своё разбиение двумерной сферы. Лучше всего это видно на рисунке:

Чтобы из правильного многогранника получить разбиение сферы, нужно описать вокруг многогранника сферу. Вершины многогранника окажутся на поверхности сферы, соединив эти точки отрезками на сфере (дугами), получим разбиение двумерной сферы на правильные сферические многоугольники. Для примера сделана видео демонстрация как икосаэдр соответствует разбиению сферы на сферические треугольники и обратно, как разбиение сферы на сферические треугольники, сходящиеся по пять штук в вершине, соответствует икосаэдру.

Чтобы по разбиению сферы построить многогранник, соответствующие дугам вершины разбиения нужно соединить обычными, прямолинейными, Евклидовыми отрезками.

Соответственно символ Шлефли икосаэдра {3, 5} - трёхугольники, сходящиеся по пять штук в вершине, задаёт не только структуру этого многогранника, но и структуру разбиения двумерной сферы. Аналогично и с другими многогранниками, их символы Шлефли задают и структуру соответствующих разбиений. Более того, разбиения плоскости Евклида и плоскости Лобачевского на правильные многоугольники, тоже можно задавать символом Шлефли. Например, {4, 4} - четырёхугольники, сходящиеся по четыре - это всем привычная нам тетрадь в клеточку, т.е. это разбиение плоскости Евклида на квадраты. А есть ли другие разбиения плоскости Евклида? Увидим дальше.

Построение разбиений двумерной сферы, плоскости Евклида и плоскости Лобачевского

Для построения разбиений двумерных пространств постоянной кривизны (таково общее название этих трёх пространств) нам потребуется элементарная школьная геометрия и знание того, что сумма углов сферического треугольника больше 180 градусов (больше Пи), что сумма углов гиперболического треугольника меньше 180 градусов (меньше Пи) и что такое символ Шлефли. Обо всём об этом уже сказано выше.

Итак, возьмём произвольный символ Шлефли {p1, p2}, он задаёт разбиение одного из трёх пространств постоянной кривизны (для плоскости это верно, для пространств высших размерностей дело обстоит сложнее, но ничто нам не мешает исследовать все комбинации символа).

Рассмотрим правильный p1 угольник, проведём отрезки, соединяющие его центр и вершины. Получим p1 штук равнобедренных треугольника (на рисунке показан только один такой треугольник). Сумму углов каждого из этих треугольников обозначим за t и выразим t через пи и коэффициент лямда.

Тогда если лямда = 1, то треугольник Евклидов, т.е. находится в Евклидовой плоскости, если лямда в интервале (1, 3), то это значит, что сумма углов больше пи и значит этот треугольник сферический (не трудно представить, что при увеличении сферического треугольника в пределе получается окружность с тремя точками на ней, в каждой точке угол треугольника получается равным пи, а в сумме 3*пи. Это объясняет верхнюю границу интервала = 3). Если же лямда в интервале (0, 1), то треугольник гиперболический, так как сумма углов у него меньше пи (т.е. меньше 180 градусов). Коротко это можно записать так:

С другой стороны, для сходимости в вершине p2 штук (т.е. целого числа) таких же многоугольников нужно, чтобы

Приравнивая выражения для 2*бетта, найденные из условия сходимости и из многоугольника:

Получили уравнение которое показывает какое из трёх пространств разбивает фигура заданная своим символом Шлефли {p1, p2}. Для решения этого уравнения надо вспомнить, так же, что p1, p2 - целые числа, большие либо равные 3. Это, так сказать, следует из их физического смысла, так как это p1 угольники (не меньше 3 углов), сходящиеся по p2 штук в вершине (тоже не меньше 3, иначе это не вершина получится).

Решение этого уравнения заключается в переборе всех возможных значений для p1, p2 больших либо равных 3 и вычислении значения лямда. Если оно получится равным 1, то {p1, p2} разбивает плоскость Евклида, если больше 1 но меньше 3, то это разбиение Сферы, если от 0 до 1, то это разбиение плоскости Лобачевского. Все эти вычисления удобно свести в таблицу.

Откуда видно, что:
1. Сфере соответствует всего 5 решений, когда лямда больше 1 и меньше 3, они выделены зелёным цветом в таблице. Это: {3, 3} - тетраэдр, {3, 4} - октаэдр, {3, 5} - икосаэдр, {4, 3} - куб, {5, 3} - додекаэдр. Их картинки были представлены в начале статьи.
2. Разбиениям Евклидовой плоскости соответствует всего три решения, когда лямда = 1, они выделены синим цветом в таблице. Вот как выглядят эти разбиения.



3. И наконец, все остальные комбинации {p1, p2} соответствуют разбиениям плоскости Лобачевского, соответственно таких разбиений бесконечное (счётное) количество. Осталось только проиллюстрировать некоторые из них, для примера.

Итоги

Таким образом, правильных многогранников всего 5, они соответствуют пяти разбиениям двумерной сферы, разбиений плоскости Евклида всего 3, и разбиений плоскости Лобачевского счётное количество.
Какое приложение этих знаний?

Есть люди, которые напрямую интересуются разбиениями сферы.

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Многогранники. Вершины, ребра, грани многогранника. ТЕОРЕМА ЭЙЛЕРА. 10 класс Выполнила: Кайгородова С.В.

Правильным называется многогранник, у которого все грани являются правильными многоугольниками, и все многогранные углы при вершинах равны.

С глубокой древности человеку известны пять удивительных многогранников

По числу граней их называют правильный тетраэдр

гексаэдр (шестигранник) или куб

октаэдр (восьмигранник)

додекаэдр (двенадцатигранник)

икосаэдр (двадцатигранник)

Развертки правильных многогранников

Историческая справка Четыре сущности природы были известны человечеству: огонь, вода, земля и воздух. По мнению Платона, их атомы имели вид правильных многогранников Великий древнегреческий философ Платон, живший в IV – V вв. до нашей эры, считал, что эти тела олицетворяют сущность природы.

атом огня имел вид тетраэдра, земли – гексаэдра (куба) воздуха – октаэдра воды - икосаэдра

Но оставался додекаэдр, которому не было соответствия Платон предположил, что существует ещё одна(пятая) сущность. Он назвал её мировым эфиром. Атомы этой пятой сущности и имели вид додекаэдра. Платон и его ученики в своих работах большое внимание уделяли перечисленным многогранникам. Поэтому эти многогранники называют также платоновыми телами.

Для любого выпуклого многогранника справедливо соотношение: Г+В-Р=2, где Г -число граней, В -число вершин, Р - число ребер данного многогранника. Грани + Вершины - Рёбра = 2. Теорема Эйлера

Характеристики правильных многогранников Многогранник Число сторон грани Число граней, сходящихся в каждой вершине Число граней (Г) Число ребер (Р) Число вершин (В) Тетраэдр 3 3 4 6 4 Гексаэдр 4 3 6 12 8 Октаэдр 3 4 8 12 6 Икосаэдр 3 5 20 30 12 Додекаэдр 5 3 12 30 20

Двойственность правильных многогранников Гексаэдр (куб) и октаэдр образуют двойственную пару многогранников. Число граней одного многогранника равно числу вершин другого и наоборот.

Возьмем любой куб и рассмотрим многогранник с вершинами в центрах его граней. Как нетрудно убедиться, получим октаэдр.

Центры граней октаэдра служат вершинами куба.

Сурьменистый сернокислый натрий – тетраэдра. Многогранники в природе, химии и биологии Кристаллы некоторых знакомых нам веществ имеют форму правильных многогранников. Кристалл пирита - природная модель додекаэдр. Кристаллы поваренной соли передают форму куб. Монокристалл алюминиево-калиевых квасцов имеет форму октаэдра. Хрусталь (призма) Икосаэдр оказался в центре внимания биологов в их спорах относительно формы вирусов. Вирус не может быть совершенно круглым, как считалось ранее. Чтобы установить его форму, брали различные многогранники, направляли на них свет под теми же углами, что и поток атомов на вирус. Оказалось, что только один многогранник дает точно такую же тень - икосаэдр. В процессе деления яйцеклетки сначала образуется тетраэдр из четырех клеток, затем октаэдр, куб и, наконец, додекаэдро-икосаэдрическая структура гаструлы. И наконец, самое, пожалуй, главное – структура ДНК генетического кода жизни – представляет собой четырехмерную развертку (по оси времени) вращающегося додекаэдра! В молекуле метана имеет форму правильного тетраэдра.

Многогранники в искусстве «Портрет Монны Лизы» Композиция рисунка основана на золотых треугольниках, являющихся частями правильного звездчатого пятиугольника. гравюра « Меланхолия» На переднем плане картины изображен додекаэдр. «Тайная Вечеря» Христос со своими учениками изображён на фоне огромного прозрачного додекаэдр.

Многогранники в архитектуре Музеи Плодов в Яманаши создан с помощью трехмерного моделирования. Четырехъярусная Спасская башня с церковью Спаса Нерукотворного - главный въезд в Казанский кремль. Возведена в XVI веке псковскими зодчими Иваном Ширяем и Постником Яковлевым по прозванию «Барма». Четыре яруса башни представляют из себя куб, многогранники и пирамиду. Спасская башня Кремля. Александрийский маяк Пирамиды Музеи Плодов


Тема. «Многогранник. Элементы многогранника – грани, вершины, ребра».

Цели. Создать условия для расширения теоретических знаний о пространственных фигурах: ввести понятия «многогранник», «грани», «вершина», «ребро»; обеспечить развитие у школьников умения выделять главное в познавательном объекте; содействовать развитию пространственного воображения учащихся.

Учебные материалы. Учебник «Математика. 4 класс» (авт. В.Н. Рудницкая, Т.В. Юдачева); компьютер; проектор; презентация «Многоугольники»; печатные бланки «Координатный угол», «Многоугольники», «Задача»; модели многогранников, развертки многогранников; зеркала; ножницы.

ХОД УРОКА

Перед началом урока дети распределяются на три группы соответственно уровню знаний – высокий, средний, низкий.

I. Организационный момент

Учитель. Дорогие мои непоседы, в очередной раз я приглашаю вас в увлекательный мир математики. И я уверена в том, что и на этом уроке вы узнаете новое, закрепите изученное и сможете полученные знания применить на практике.

Сегодня наш урок мне хочется начать словами английского философа Роджера Бэкона о математике: «Тот, кто не знает математики, не может изучить другие науки и не может познать мир». Я думаю, что на уроке мы непременно найдем подтверждение словам этого философа.

II. Повторение пройденного материала. Построение многоугольников по координатам

У. На уроках математики в 1-м, 2-м, 3-м классах мы изучали различные плоские геометрические фигуры, а также учились их строить. Я предлагаю вам построить в координатном угле плоские фигуры по данным координатам.

Задание выполняется на печатных бланках.

Группа 1

Постройте фигуру, если известны координаты А (0; 2), В (2; 5), С (9; 2). Какая фигура получилась?

Группа 2

Постройте прямоугольник, если точки А (3; 2) и В (6; 5) – его противоположные вершины. Назовите координаты противоположных вершин. Как по-другому называется эта фигура?

Группа 3

Постройте фигуру, если известны координаты ее вершин А (2; 3), В (2; 6), С (5; 8), D (8; 6), K (8; 3), М (5; 1). Какая фигура получилась?

– Как можно назвать все эти фигуры?

Дети. Это многоугольники.

Слайд 1

У. Нам известно, что все многоугольники имеют вершины и стороны. Назовите и покажите их.

По одному человеку от группы выполняют задание у доски.

III. Знакомство с новым материалом

У. Сегодня я познакомлю вас с объемными геометрическими фигурами, которые называются многоугольниками. Их модели представлены у вас на столах.

На столах у учащихся объемные фигуры: куб, параллелепипед, пирамиды, призмы.

– Садитесь поудобнее, смотрите внимательно, слушайте старательно и запоминайте.

Знакомство с понятиями «многогранник», «грань», «вершина», «ребро»

– Если взять 4 треугольника, то можно создать объемную фигуру – пирамиду . Из квадратов можно получить другую фигуру – куб, из прямоугольников – параллелепипед. У вас на столе еще одна фигура – призма, которая составлена из прямоугольников и треугольников. Все эти фигуры называются многогранниками .

Каждый из многоугольников (в данном случае треугольников) называют гранью многогранника. А стороны многоугольников называют ребрами многогранника. И, конечно же, вершины многоугольника будут вершинами многогранника. Вот так выглядит чертеж многогранника на листе бумаги.

Слайд 2

– Кажется, что фигура сделана из стекла. Как вы думаете, что изображено пунктиром на чертеже?

Д. Невидимые ребра.

Дети работают по рисунку у доски.

У. Итак, что это?

Д. Многогранник.

У. Назовите и покажите грани многогранника, его ребра и вершины.

Дети показывают указкой и перечисляют.

– Если разрезать пирамиду с вершины до основания по ребрам, то получится вот такая развертка.
А теперь, дорогие мои непоседы, отыщите на столе бланк с изображением многоугольника, внимательно прочитайте инструкцию:

1. Внимательно рассмотрите чертеж многоугольника.
2. Найдите нужную развертку многоугольника (модели на доске).
3. Соберите модель многоугольника.
4. Укажите число вершин __ , граней __ , ребер __ многоугольника.
5. Назовите каждую вершину __ , ребро __ , грань __ многоугольника.

Группа 1

Группа 2

Группа 3

– На доске представлены развертки многогранников. Попробуйте по чертежу отыскать развертку своей фигуры и собрать многогранник. Работайте вместе, и, я думаю, у вас все получится.

Проверка выполнения задания (слайды 3, 4, 5).

вершин – 8; ребер – 12; граней – 6;
вершины – M, B, C, A, X, K, O, T;
ребра – MB, MA, MT, TX, TO, XK, XA, KO, KC, CB, AC, BO;
грани – MBOT, MBCA, KCBO, TXKO, ACKX, MAXT.

вершин – 8; ребер – 12; граней – 6;
вершины – M, B, C, A, X, K, O, T;
ребра – MB, MA, MT, TX, TO, XK, XA, KO, KC, CB, AC, BO;
грани – MBOT, MBCA, KCBO, TXKO, ACKX, MAXT.

вершин – 12; ребер – 18; граней – 8;
вершины – Y, B, A, X, N, M, P, E, D, F, L, C;
ребра – YB, YX, BA, XA, XN, NM, AM, ME, EP, NP, ED, PF, DF, FL, LC, CD, LY, CB;
грани – BAMEDC, YXNPFL, YBAX, XAMN, NMEP, EDFP, DFLC, CLYB.

IV. Обобщение и систематизация знаний

У. Скажите, есть ли в окружающем нас мире предметы, которые имеют форму многогранников?

Выслушиваются ответы детей. Проводится импровизированная «прогулка» по школьному двору. Дети «рассматривают» модели школьного здания, подсобных помещений, которые имеют вид многогранников.

– Выполните задание:

Волк и Заяц склеили из цветной бумаги домик. Сколько граней каждого цвета потребовалось? Форму какого многоугольника имеет грань каждого цвета?

Слайд 6

V. Закрепление ранее изученного

У. Ребята, представьте себя архитекторами, дизайнерами или строителями и попробуйте решить задачи.

Задание для группы 1

Найдите площадь, которую будет занимать новое школьное здание, если его длина 74 м, а ширина – 13 м. (Ответ: 962 кв. м. )

Задание для группы 2

Площадь игровой площадки во дворе нашей школы равна 1080 кв. м. Это на 1320 кв. м меньше, чем площадь хоккейной площадки. Вычислите площадь хоккейной площадки. (Ответ: 2400 кв. м )

Задание для группы 3

Под строительство нового здания для нашей школы отведен участок площадью 2500 кв. м. Известно, что здание будет шириной 13 м, длиной 74 м. Какая площадь участка останется под цветники и дорожки после постройки здания? (Ответ: 1) 962 кв. м; 2) 1538 кв. м )

Дети проверяют решения задач, объясняют, как решали.

VI. Итог урока

У. Оказывается, Роджер Бэкон был прав, сказав: «Тот, кто не знает математики, не может изучить другие науки и не может познать мир».

Учитель оценивает работу групп.

Геометрия прекрасна тем, что, в отличие от алгебры, где не всегда понятно, что и зачем считаешь, дает наглядность объекта. Этот удивительный мир различных тел украшают собой правильные многогранники.

Общие сведения о правильных многогранниках

По мнению многих, правильные многогранники, или как их еще называют Платоновы тела, обладают неповторимыми свойствами. С этими объектами связано несколько научных гипотез. Когда начинаешь изучать данные геометрические тела, понимаешь, что практически ничего не знаешь о таком понятии, как правильные многогранники. Презентация этих объектов в школе не всегда проходит интересно, поэтому многие даже и не помнят, как они называются. В памяти большинства людей остается только куб. Ни одни тела в геометрии не обладают таким совершенством, как правильные многогранники. Все названия этих геометрических тел произошли из Древней Греции. Они означают количество граней: тетраэдр - четырехгранный, гексаэдр - шестигранный, октаэдр - восьмигранный, додекаэдр - двенадцатигранный, икосаэдр - двадцатигранный. Все эти геометрические тела занимали важнейшее место в концепции Платона о мироздании. Четыре из них олицетворяли стихии или сущности: тетраэдр - огонь, икосаэдр - воду, куб - землю, октаэдр - воздух. Додекаэдр воплощал все сущее. Он считался главным, поскольку был символом мироздания.

Обобщение понятия многогранника

Многогранником является совокупность конечного числа многоугольников такая, что:

  • каждая из сторон любого из многоугольников является одновременно и стороной только одного другого многоугольника по той же стороне;
  • от каждого из многоугольников можно дойти до других переходя по смежным с ним многоугольникам.

Многоугольники, составляющие многогранник, представляют собой его грани, а их стороны - ребра. Вершинами многогранников являются вершины многоугольников. Если под понятием многоугольник понимают плоские замкнутые ломаные, то приходят к одному определению многогранника. В том случае, когда под этим понятием подразумевают часть плоскости, что ограничена ломаными линиями, то следует понимать поверхность, состоящую из многоугольных кусочков. называют тело, лежащее по одну сторону плоскости, прилегающей к его грани.

Другое определение многогранника и его элементов

Многогранником называют поверхность, состоящую из многоугольников, которая ограничивает геометрическое тело. Они бывают:

  • невыпуклыми;
  • выпуклыми (правильные и неправильные).

Правильный многогранник - это выпуклый многогранник с максимальной симметрией. Элементы правильных многогранников:

  • тетраэдр: 6 ребер, 4 грани, 5 вершин;
  • гексаэдр (куб): 12, 6, 8;
  • додекаэдр: 30, 12, 20;
  • октаэдр: 12, 8, 6;
  • икосаэдр: 30, 20, 12.

Теорема Эйлера

Она устанавливает связь между числом ребер, вершин и граней, топологически эквивалентных сфере. Складывая количество вершин и граней (В + Г) у различных правильных многогранников и сравнивая их с количеством ребер, можно установить одну закономерность: сумма количества граней и вершин равняется числу ребер (Р), увеличенному на 2. Можно вывести простую формулу:

  • В + Г = Р + 2.

Эта формула верна для всех выпуклых многогранников.

Основные определения

Понятие правильного многогранника невозможно описать одним предложением. Оно более многозначное и объемное. Чтобы тело было признано таковым, необходимо, чтобы оно отвечало ряду определений. Так, геометрическое тело будет являться правильным многогранником при выполнении таких условий:

  • оно выпуклое;
  • одинаковое количество ребер сходится в каждой из его вершин;
  • все грани его - правильные многоугольники, равные друг другу;
  • все его равны.

Свойства правильных многогранников

Существует 5 разных типов правильных многогранников:

  1. Куб (гексаэдр) - у него плоский угол при вершине составляет 90°. Он имеет 3-гранный угол. Сумма плоских углов у вершины составляет 270°.
  2. Тетраэдр - плоский угол при вершине - 60°. Он имеет 3-гранный угол. Сумма плоских углов у вершины - 180°.
  3. Октаэдр - плоский угол при вершине - 60°. Он имеет 4-гранный угол. Сумма плоских углов у вершины - 240°.
  4. Додекаэдр - плоский угол при вершине 108°. Он имеет 3-гранный угол. Сумма плоских углов у вершины - 324°.
  5. Икосаэдр - у него плоский угол при вершине - 60°. Он имеет 5-гранный угол. Сумма плоских углов у вершины составляет 300°.

Площадь поверхности этих геометрических тел (S) вычисляется, как площадь правильного многоугольника, умноженная на количество его граней (G):

  • S = (a: 2) х 2G ctg π/p.

Объем правильного многогранника

Эта величина вычисляется путем умножения объема правильной пирамиды, в основании которой находится правильный многоугольник, на число граней, а высота ее является радиусом вписанной сферы (r):

  • V = 1: 3rS.

Объемы правильных многогранников

Как и любое другое геометрическое тело, правильные многогранники имеют различные объемы. Ниже представлены формулы, по которым можно их вычислить:

  • тетраэдр: α х 3√2: 12;
  • октаэдр: α х 3√2: 3;
  • икосаэдр; α х 3;
  • гексаэдр (куб): 5 х α х 3 х (3 + √5) : 12;
  • додекаэдр: α х 3 (15 + 7√5) : 4.

Гексаэдр и октаэдр являются дуальными геометрическими телами. Иными словами, они могут получиться друг из друга в том случае, если центр тяжести грани одного принимается за вершину другого, и наоборот. Также дуальными являются икосаэдр и додекаэдр. Сам себе дуален только тетраэдр. По способу Евклида можно получить додекаэдр из гексаэдра с помощью построения «крыш» на гранях куба. Вершинами тетраэдра будут любые 4 вершины куба, не смежные попарно по ребру. Из гексаэдра (куба) можно получить и другие правильные многогранники. Несмотря на то что есть бесчисленное множество, правильных многогранников существует всего 5.

Радиусы правильных многоугольников

С каждым из этих геометрических тел связаны 3 концентрические сферы:

  • описанная, проходящая через его вершины;
  • вписанная, касающаяся каждой его грани в центре ее;
  • срединная, касающаяся всех ребер в середине.

Радиус сферы описанной рассчитывается по такой формуле:

  • R = a: 2 х tg π/g х tg θ: 2.

Радиус сферы вписанной вычисляется по формуле:

  • R = a: 2 х ctg π/p х tg θ: 2,

где θ - двухгранный угол, который находится между смежными гранями.

Радиус сферы срединной можно вычислить по следующей формуле:

  • ρ = a cos π/p: 2 sin π/h,

где h величина = 4,6 ,6,10 или 10. Отношение описанных и вписанных радиусов симметрично относительно p и q. Оно рассчитывается по формуле:

  • R/r = tg π/p х tg π/q.

Симметрия многогранников

Симметрия правильных многогранников вызывает основной интерес к этим геометрическим телам. Под ней понимают такое движение тела в пространстве, которое оставляет одно и то же количество вершин, граней и ребер. Другими словами, под действием преобразования симметрии ребро, вершина, грань или сохраняет свое первоначальное положение, или перемещается в исходное положение другого ребра, другой вершины или грани.

Элементы симметрии правильных многогранников свойственны всем видам таких геометрических тел. Здесь речь ведется о тождественном преобразовании, которое оставляет любую из точек в исходном положении. Так, при повороте многоугольной призмы можно получить несколько симметрий. Любая из них может быть представлена как произведение отражений. Симметрию, которая является произведением четного количества отражений, называют прямой. Если же она является произведением нечетного количества отражений, то ее называют обратной. Таким образом, все повороты вокруг прямой представляют собой прямую симметрию. Любое отражение многогранника - это обратная симметрия.

Чтобы лучше разобраться в элементах симметрии правильных многогранников, можно взять пример тетраэдра. Любая прямая, которая будет проходить через одну из вершин и центр этой геометрической фигуры, будет проходить и через центр грани, противоположной ей. Каждый из поворотов на 120 и 240° вокруг прямой принадлежит к множественному числу симметрий тетраэдра. Поскольку у него по 4 вершины и грани, то получается всего восемь прямых симметрий. Любая из прямых, проходящих через середину ребра и центр этого тела, проходит через середину его противоположного ребра. Любой поворот на 180°, называемый полуоборотом, вокруг прямой является симметрией. Поскольку у тетраэдра есть три пары ребер, то получится еще три прямые симметрии. Исходя из вышеизложенного, можно сделать вывод, что общее число прямых симметрий, и в том числе тождественное преобразование, будет доходить до двенадцати. Других прямых симметрий у тетраэдра не существует, но при этом у него есть 12 обратных симметрий. Следовательно, тетраэдр характеризуется всего 24 симметриями. Для наглядности можно построить модель правильного тетраэдра из картона и убедиться, что это геометрическое тело действительно имеет всего 24 симметрии.

Додекаэдр и икосаэдр - наиболее близкие к сфере тела. Икосаэдр обладает наибольшим числом граней, наибольшим и плотнее всего может прижаться к вписанной сфере. Додекаэдр обладает наименьшим угловым дефектом, наибольшим телесным углом при вершине. Он может максимально заполнить свою описанную сферу.

Развертки многогранников

Правильные которых мы все склеивали в детстве, имеют много понятий. Если есть совокупность многоугольников, каждая сторона которых отождествлена с только одной стороной многогранника, то отождествление сторон должно соответствовать двум условиям:

  • от каждого многоугольника можно перейти по многоугольникам, имеющим отождествленную сторону;
  • отождествляемые стороны должны иметь одинаковую длину.

Именно совокупность многоугольников, которые удовлетворяют эти условия, и называется разверткой многогранника. Каждое из этих тел имеет их несколько. Так, например, у куба их насчитывается 11 штук.

Многогранники не только занимают видное место в геометрии, но и встречаются в повседневной жизни каждого человека. Не говоря уже об искусственно созданных предметах обихода в виде различных многоугольников, начиная со спичечного коробка и заканчивая архитектурными элементами, в природе также встречаются кристаллы в форме куба (соль), призмы (хрусталь), пирамиды (шеелит), октаэдра (алмаз) и т. д.

Понятие многогранника, виды многогранников в геометрии

Геометрия как наука содержит раздел стереометрию, изучающую характеристики и свойства объёмных тела, стороны которых в трёхмерном пространстве образованы ограниченными плоскостями (гранями), носят название "многогранники". Виды многогранников насчитывают не один десяток представителей, отличающихся количеством и формой граней.

Тем не менее у всех многогранников есть общие свойства:

  1. Все они имеют 3 неотъемлемых компонента: грань (поверхность многоугольника), вершина (углы, образовавшиеся в местах соединения граней), ребро (сторона фигуры или отрезок, образованный в месте стыка двух граней).
  2. Каждое ребро многоугольника соединяет две, и только две грани, которые по отношению друг к другу являются смежными.
  3. Выпуклость означает, что тело полностью расположено только по одну сторону плоскости, на которой лежит одна из граней. Правило применимо ко всем граням многогранника. Такие геометрические фигуры в стереометрии называют термином выпуклые многогранники. Исключение составляют звёздчатые многогранники, которые являются производными правильных многогранных геометрических тел.

Многогранники можно условно разделить на:

  1. Виды выпуклых многогранников, состоящих из следующих классов: обычные или классические (призма, пирамида, параллелепипед), правильные (также называемые Платоновыми телами), полуправильные (второе название - Архимедовы тела).
  2. Невыпуклые многогранники (звёздчатые).

Призма и её свойства

Стереометрия как раздел геометрии изучает свойства трёхмерных фигур, виды многогранников (призма в их числе). Призмой называют геометрическое тело, которое имеет обязательно две совершенно одинаковые грани (их также называют основаниями), лежащие в параллельных плоскостях, и n-ое число боковых граней в виде параллелограммов. В свою очередь, призма имеет также несколько разновидностей, в числе которых такие виды многогранников, как:

  1. Параллелепипед - образуется, если в основании лежит параллелограмм - многоугольник с 2 парами равных противоположных углов и двумя парами конгруэнтных противоположных сторон.
  2. Прямая призма имеет перпендикулярные к основанию рёбра.
  3. характеризуется наличием непрямых углов (отличных от 90) между гранями и основанием.
  4. Правильная призма характеризуется основаниями в виде с равными боковыми гранями.

Основные свойства призмы:

  • Конгруэнтные основания.
  • Все рёбра призмы равны и параллельны по отношению друг к другу.
  • Все боковые грани имеют форму параллелограмма.

Пирамида

Пирамидой называют геометрическое тело, которое состоит из одного основания и из n-го числа треугольных граней, соединяющихся в одной точке - вершине. Следует отметить, что если боковые грани пирамиды представлены обязательно треугольниками, то в основании может быть как треугольный многоугольник, так и четырёхугольник, и пятиугольник, и так до бесконечности. При этом название пирамиды будет соответствовать многоугольнику в основании. Например, если в основании пирамиды лежит треугольник - это , четырёхугольник - четырёхугольная, и т. д.

Пирамиды - это конусоподобные многогранники. Виды многогранников этой группы, кроме вышеперечисленных, включают также следующих представителей:

  1. Правильная пирамида имеет в основании правильный многоугольник, и высота ее проектируется в центр окружности, вписанной в основание или описанной вокруг него.
  2. Прямоугольная пирамида образуется тогда, когда одно из боковых рёбер пересекается с основанием под прямым углом. В таком случае это ребро справедливо также назвать высотой пирамиды.

Свойства пирамиды:

  • В случае если все боковые рёбра пирамиды конгруэнтны (одинаковой высоты), то все они пересекаются с основанием под одним углом, а вокруг основания можно прочертить окружность с центром, совпадающим с проекцией вершины пирамиды.
  • Если в основании пирамиды лежит правильный многоугольник, то все боковые рёбра конгруэнтны, а грани являются равнобедренными треугольниками.

Правильный многогранник: виды и свойства многогранников

В стереометрии особое место занимают геометрические тела с абсолютно равными между собой гранями, в вершинах которых соединяется одинаковое количество рёбер. Эти тела получили название Платоновы тела, или правильные многогранники. Виды многогранников с такими свойствами насчитывают всего пять фигур:

  1. Тетраэдр.
  2. Гексаэдр.
  3. Октаэдр.
  4. Додекаэдр.
  5. Икосаэдр.

Своим названием правильные многогранники обязаны древнегреческому философу Платону, описавшему эти геометрические тела в своих трудах и связавшему их с природными стихиями: земли, воды, огня, воздуха. Пятой фигуре присуждали сходство со строением Вселенной. По его мнению, атомы природных стихий по форме напоминают виды правильных многогранников. Благодаря своему самому захватывающему свойству - симметричности, эти геометрические тела представляли большой интерес не только для древних математиков и философов, но и для архитекторов, художников и скульпторов всех времён. Наличие всего лишь 5 видов многогранников с абсолютной симметрией считалось фундаментальной находкой, им даже присуждали связь с божественным началом.

Гексаэдр и его свойства

В форме шестигранника преемники Платона предполагали сходство со строением атомов земли. Конечно же, в настоящее время эта гипотеза полностью опровергнута, что, однако, не мешает фигурам и в современности привлекать умы известных деятелей своей эстетичностью.

В геометрии гексаэдр, он же куб, считается частным случаем параллелепипеда, который, в свою очередь, является разновидностью призмы. Соответственно и свойства куба связаны со с той лишь разницей, что все грани и углы куба равны между собой. Из этого вытекают следующие свойства:

  1. Все рёбра куба конгруэнтны и лежат в параллельных плоскостях по отношению друг к другу.
  2. Все грани - конгруэнтные квадраты (всего в кубе их 6), любой из которых может быть принят за основание.
  3. Все межгранные углы равны 90.
  4. Из каждой вершины исходит равное количество рёбер, а именно 3.
  5. Куб имеет 9 которые все пересекаются в точке пересечения диагоналей гексаэдра, именуемой центром симметрии.

Тетраэдр

Тетраэдр - это четырёхгранник с равными гранями в форме треугольников, каждая из вершин которых является точкой соединения трёх граней.

Свойства правильного тетраэдра:

  1. Все грани тетраэда - это из чего следует, что все грани четырёхгранника конгруэнтны.
  2. Так как основание представлено правильной геометрической фигурой, то есть имеет равные стороны, то и грани тетраэдра сходятся под одинаковым углом, то есть все углы равны.
  3. Сумма плоских углов при каждой из вершин равняется 180, так как все углы равны, то любой угол правильного четырёхгранника составляет 60.
  4. Каждая из вершин проецируется в точку пересечения высот противоположной (ортоцентр) грани.

Октаэдр и его свойства

Описывая виды правильных многогранников, нельзя не отметить такой объект, как октаэдр, который визуально можно представить в виде двух склеенных основаниями четырёхугольных правильных пирамид.

Свойства октаэдра:

  1. Само название геометрического тела подсказывает количество его граней. Восьмигранник состоит из 8 конгруэнтных равносторонних треугольников, в каждой из вершин которого сходится равное количество граней, а именно 4.
  2. Так как все грани октаэдра равны, равны и его межгранные углы, каждый из которых равняется 60, а сумма плоских углов любой из вершин составляет, таким образом, 240.

Додекаэдр

Если представить, что все грани геометрического тела представляют собой правильный пятиугольник, то получится додекаэдр - фигура из 12 многоугольников.

Свойства додекаэдра:

  1. В каждой вершине пересекаются по три грани.
  2. Все грани равны и имеют одинаковую длину рёбер, а также равную площадь.
  3. У додекаэдра 15 осей и плоскостей симметрии, причём любая из них проходит через вершину грани и середину противоположного ей ребра.

Икосаэдр

Не менее интересная, чем додекаэдр, фигура икосаэдр представляет собой объёмное геометрическое тело с 20 равными гранями. Среди свойств правильного двадцатигранника можно отметить следующие:

  1. Все грани икосаэдра - равнобедренные треугольники.
  2. В каждой вершине многогранника сходится пять граней, и сумма смежных углов вершины составляет 300.
  3. Икосаэдр имеет так же, как и додекаэдр, 15 осей и плоскостей симметрии, проходящих через середины противоположных граней.

Полуправильные многоугольники

Кроме Платоновых тел, в группу выпуклых многогранников входят также Архимедовы тела, которые представляют собой усечённые правильные многогранники. Виды многогранников данной группы обладают следующими свойствами:

  1. Геометрические тела имеют попарно равные грани нескольких типов, например, усечённый тетраэдр имеет так же, как и правильный тетраэдр, 8 граней, но в случае Архимедова тела 4 грани будут треугольной формы и 4 - шестиугольной.
  2. Все углы одной вершины конгруэнтны.

Звёздчатые многогранники

Представители необъёмных видов геометрических тел - звёздчатые многогранники, грани которых пересекаются друг с другом. Они могут быть образованы путём слияния двух правильных трёхмерных тел либо в результате продолжения их граней.

Таким образом, известны такие звёздчатые многогранники, как: звёздчатые формы октаэдра, додекаэдра, икосаэдра, кубооктаэдра, икосододекаэдра.