Масса – это физическая величина, характеризующая инертность тела. Масса Чем больше масса тела, тем оно более инертно. Что такое масса тела

В жизни мы очень часто говорим: «вес 5 килограмм», «весит 200 грамм» и так далее. И при этом не знаем, что допускаем ошибку, говоря так. Понятие веса тела изучают все в курсе физики в седьмом классе, однако ошибочное использование некоторых определений смешалось у нас настолько, что мы забываем изученное и считаем, что вес тела и масса это одно и то же.

Однако это не так. Более того, масса тела величина неизменная, а вот вес тела может меняться, уменьшаясь вплоть до нуля. Так в чем же ошибка и как говорить правильно? Попытаемся разобраться.

Вес тела и масса тела: формула подсчета

Масса это мера инертности тела, это то, каким образом тело реагирует на приложенное к нему воздействие, либо же само воздействует на другие тела. А вес тела это сила, с которой тело действует на горизонтальную опору или вертикальный подвес под влиянием притяжения Земли.

Масса измеряется в килограммах, а вес тела, как и любая другая сила в ньютонах. Вес тела имеет направление, как и любая сила, и является величиной векторной. А масса не имеет никакого направления и является величиной скалярной.

Стрелочка, которой обозначается вес тела на рисунках и графиках, всегда направлена вниз, так же, как и сила тяжести.

Формула веса тела в физике записывается следующим образом:

где m - масса тела

g - ускорение свободного падения = 9,81 м/с^2

Но, несмотря на совпадение с формулой и направлением силы тяжести, есть серьезное различие между силой тяжести и весом тела. Сила тяжести приложена к телу, то есть, грубо говоря, это она давит на тело, а вес тела приложен к опоре или подвесу, то есть, здесь уже тело давит на подвес или опору.

Но природа существования силы тяжести и веса тела одинакова притяжение Земли. Собственно говоря, вес тела является следствием приложенной к телу силы тяжести. И, так же как и сила тяжести, вес тела уменьшается с увеличением высоты.

Вес тела в невесомости

В состоянии невесомости вес тела равен нулю. Тело не будет давить на опору или растягивать подвес и весить ничего не будет. Однако, будет по-прежнему обладать массой, так как, чтобы придать телу какую-либо скорость, надо будет приложить определенное усилие, тем большее, чем больше масса тела.

В условиях же другой планеты масса также останется неизменной, а вес тела увеличится или уменьшится, в зависимости от силы притяжения планеты. Массу тела мы измеряем весами, в килограммах, а чтобы измерить вес тела, который измеряется в ньютонах, можно применить динамометр специальное устройство для измерения силы.

Масса тела

основная механическая величина, определяющая величину ускорения, сообщаемого телу данной силой. М. тел прямо пропорциональны силам, сообщающим им равные ускорения и обратно пропорциональны ускорениям, сообщаемыми им равными силами. Поэтому связь между М. (т), силой f, и ускорением a, можно выразить формулой

т. е. М. численно равна отношению между движущей силой и произведенным ею ускорением. Величина этого отношения зависит исключительно от двигаемого тела, поэтому величина М. вполне характеризует тело с механической стороны. Воззрение на реальное значение М. менялось с течением развития науки; в настоящее время, в системе абсолютных механических единиц, М. принимается за количество вещества, за основную величину, по которой затем уже определяется сила. С математической точки зрения безразлично, принять ли М. за отвлеченный множитель, на который надо помножить силу ускорительную, чтобы получить силу движущую, или за количество вещества: оба допущения приводят к одинаковым результатам; с физической же точки зрения, несомненно, предпочтительнее последнее определение. Во-первых, М., как количество вещества в теле, имеет реальное значение, ибо от количества вещества в теле зависят не только механические, но и многие физические и химические свойства тел. Во-вторых, основные величины в механике и физике должны быть доступны непосредственному, возможно точному измерению; силу мы можем измерять только пружинными силомерами - приборами не только недостаточно точными, но и недостаточно надежными, вследствие изменяемости упругости пружин с течением времени. Рычажные же весы не определяют сами по себе абсолютной величины веса, как силы, а лишь отношение или равенство веса (см. Вес и взвешивание) двух тел. Напротив, рычажные весы дают возможность измерять или сравнивать М. тел, так как вследствие равенства ускорения падения всех тел на одной и той же точке земли, равным весам двух тел соответствуют равные М. Уравновешивая данное тело требуемым числом принятых единиц М., найдем абсолютную величину М. его. За единицу М. принят в настоящее время в научных трактатах грамм (см.). Грамм почти равен М. одного кубического сантиметра воды, при температуре наибольшей плотности ее (при 4°С М. 1 куб. см воды = 1,000013 г). По единице М. определяется и единица силы - динама, или, сокращенно, - дина (см. Единицы мер). Сила f, сообщающая т граммам а единиц ускорения, равна (1 дине)×m ×а = та динам. Также определяется и вес тела р, в динах, по M. m, и ускорению свободного падения g; p = mg дин. Однако, мы не имеем достаточно данных для непосредственного сравнения количеств различных веществ, например дерева и меди, для поверки, действительно ли равные М. этих веществ содержат равные количества их. Пока мы имеем дело с телами из одного и того же вещества, мы можем измерять количества вещества в них по их объемам, при равных. температурах, по весу тел, по силам, сообщающим им равные ускорения, так как эти силы, при равномерном распределении по телу, должны быть пропорциональны числу равных частиц. Эта пропорциональность количества одного и того же вещества его весу имеет место и для тел различных температур, так как нагревание не меняет веса тела. Если же мы имеем дело с телами из различных веществ (одно из меди, другое из дерева и т. д.), то не можем утверждать ни пропорциональности количеств вещества объемам этих тел, ни пропорциональности их силам, сообщающим им равные ускорения, так как различные вещества могли бы обладать различной способностью к восприятию движения подобно тому, как они имеют различную способность к намагничиванию, к поглощению теплоты, к нейтрализации кислот и т. п. Поэтому правильнее было бы сказать, что равные М. различных веществ содержат эквивалентные количества их по отношению к механическому действию - но безразлично относительно прочих физических и химических свойств этих веществ. Лишь под одним условием можно сравнивать количества разнородных веществ по их весу - это под условием распространения на них понятия относительной плотности тел, состоящих из одного и того же вещества, но различных температур. Для этого необходимо предположить, что все разнородные вещества состоят из совершенно одинаковых частиц, или первоначальных элементов, а все различные физические и химические свойства этих веществ суть следствие различной группировки и сближения этих элементов. Утверждать или отрицать это мы не имеем в настоящее время достаточно данных, хотя многие явления говорят даже в пользу такой гипотезы. Химические явления в сущности не противоречат этой гипотезе: многие тела, состоящие из различных простых тел, представляют сходные физические и кристаллические свойства, и наоборот, тела с одинаковым составом из простых веществ представляют различные физические и отчасти даже химические свойства, таковы, напр., изомерные тела, имеющие один и тот же процентный состав из одних и тех же простых тел, и аллотропические тела, представляющие разновидности одного и того же простого тела (каковы, например, уголь, алмаз и графит, представляющие различные состояния углерода). Сила тяжести, наиболее общая из всех сил природы, говорит в пользу гипотезы единства вещества, так как действует на все тела одинаково. Что все тела из одного и того же вещества должны падать одинаково скоро и вес их должен быть пропорционален количеству вещества, это понятно; но отсюда никак не следует, чтобы и тела из различных веществ падали также с одинаковой скоростью, так как тяжесть могла бы действовать иначе, например, на водяные частицы, чем на цинковые, подобно тому как магнитная сила действует различно на различные тела. Наблюдения показывают, однако, что все тела без исключения, в пустом пространстве на одном и том же месте поверхности Земли, падают одинаково скоро, и следовательно, тяжесть действует на все тела так, как будто бы они состояли из одного и того же вещества и различались только числом частиц и распределением их в данном объеме. В химических явлениях соединения и разложения тел суммы весов их остаются неизменными; видоизменяется строение их и вообще свойства, не принадлежащие самой сущности вещества. Независимость силы тяжести от строения и состава тел показывает, что эта сила глубже проникает в сущность вещества, чем все другие силы природы. Поэтому измерение количества вещества весом тел имеет полное физическое основание.

П . Фан дер Флит.


Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. - С.-Пб.: Брокгауз-Ефрон . 1890-1907 .

Смотреть что такое "Масса тела" в других словарях:

    масса тела - kūno masė statusas T sritis Standartizacija ir metrologija apibrėžtis Tam tikro kūno masė. atitikmenys: angl. body mass vok. Körpermasse, f rus. масса тела, f pranc. masse du corps, f … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    масса тела - kūno masė statusas T sritis fizika atitikmenys: angl. body mass vok. Körpermasse, f rus. масса тела, f pranc. masse du corps, f … Fizikos terminų žodynas

    масса тела - kūno masė statusas T sritis Kūno kultūra ir sportas apibrėžtis Žmogaus svoris. Kūno masė yra labai svarbus žmogaus fizinės brandos, sveikatos ir darbingumo rodiklis, vienas pagrindinių fizinio išsivystymo požymių. Kūno masė priklauso nuo amžiaus … Sporto terminų žodynas

    Масса тела - Один из основных показателей уровня физического развития человека, зависящий от возраста, пола, морфологических и функциональных гено– и фенотипических особенностей. Несмотря на существование множества систем оценки «нормальной» М. т., понятие… …

    - (вес) в антропологии один из основных антропометрических признаков, определяющих физическое развитие … Большой Энциклопедический словарь

    В сочетании с другими антропометрическими признаками [длиной тела (ростом) и окружностью груди] важный показатель физического развития и состояния здоровья. Зависит от пола, роста, связана с характером питания, наследственностью,… … Большая советская энциклопедия

    - (вес), в антропологии один из основных антропометрических признаков, определяющих физическое развитие. * * * МАССА ТЕЛА ЧЕЛОВЕКА МАССА ТЕЛА ЧЕЛОВЕКА (вес), в антропологии один из основных антропометрических признаков, определяющих физическое… … Энциклопедический словарь

    - (вес), в антропологии один из осн. антропометрии, признаков, определяющих физ. развитие … Естествознание. Энциклопедический словарь

    Избыточная масса тела - Накопление массы тела (преимущественно за счет жировой ткани) свыше нормальной для данного человека, но до развития ожирения. Во врачебном контроле под И. м. т. понимают превышение нормы на 1–9 %. Проблема заключается, однако, в установлении… … Адаптивная физическая культура. Краткий энциклопедический словарь

    идеальная масса тела - ideali kūno masė statusas T sritis Kūno kultūra ir sportas apibrėžtis Konkrečių sporto šakų, rungčių, tam tikras funkcijas komandoje atliekančių žaidėjų kūno masės modelis. atitikmenys: angl. ideal body mass vok. ideale Körpermasse, f rus.… … Sporto terminų žodynas

Книги

  • Школа здоровья. Избыточная масса тела и ожирение (+ CD-ROM) , Р. А. Еганян, А. М. Калинина. Издание включает в себя руководство для врачей, проводящих школу здоровья для лиц с избыточной массой тела и ожирением, с приложением на CD-ROM и материалы для пациентов. В руководстве для…

Изучением различия между массой и весом тела занимался Ньютон. Он рассуждал так: мы прекрасно знаем, что различные вещества, взятые в одинаковых объемах, весят неодинаково.

Масса

Количество вещества, содержащееся в том или ином предмете, Ньютон назвал массой.

Масса - то общее, что присуще всем без исключения предметам, - все равно, будут ли это черепки от старого глиняного горшка или золотые часы.

Например, кусочек золота более чем вдвое тяжелее точно такого же кусочка меди. Вероятно, частички золота, предположил Ньютон, способны укладываться плотнее, чем частички меди, и в золоте умещается больше вещества, чем в таком же по размерам куске меди.

Современные ученые установили, что различная плотность веществ объясняется не только тем, что частицы вещества уложены более плотно. Сами мельчайшие частички - атомы - отличаются по весу друг от друга: атомы золота тяжелее атомов меди .

Лежит ли какой-нибудь предмет неподвижно, или свободно падает на землю, или качается, подвешенный на нитке, - его масса при всех условиях остается неизменной .

Когда мы хотим узнать, как велика масса предмета, мы взвешиваем его на обычных торговых или лабораторных весах с чашками и гирями. На одну чашку весов кладем предмет, а на другую гири и таким образом сравниваем массу предмета с массой гирь. Поэтому торговые и лабораторные весы можно перевозить куда угодно: на полюс и на экватор, на вершину высокой горы и в глубокую шахту. Всюду и везде, даже на других планетах, эти весы будут показывать правильно, потому что с их помощью мы определяем не вес, а массу.

В разных точках земли можно измерять пружинными весами. Прицепив на крючок пружинных весов какой-либо предмет, мы сравниваем силу притяжения Земли, которую испытывает этот предмет, с силой упругости пружины. Сила тяжести тянет вниз, (подробнее: ) сила пружины - вверх, и, когда обе силы уравновесятся, указатель весов останавливается на определенном делении.

Пружинные весы верны только на той широте, где они изготовлены. Во всех других широтах, на полюсе и на экваторе они будут показывать различный вес. Правда, разница невелика, но она все же обнаружится, потому что сила тяжести на Земле не везде одинакова, а сила упругости пружины, разумеется, остается постоянной.

На других планетах эта разность окажется значительной и заметной. На Луне, например, предмет, весивший на Земле 1 килограмм, потянет на пружинных весах, привезенных с Земли, 161 грамм, на Марсе - 380 граммов, а на огромном Юпитере - 2640 граммов.

Чем больше масса планеты, тем больше и сила, с которой она притягивает тело, подвешенное на пружинных весах .

Поэтому так много весит тело на Юпитере и так мало на Луне.

Проблема «нормальной» массы тела представляется достаточно актуальной для многих людей. Правда, при этом возникают серьезные затруднения в определении самого понятия.

Чаще всего люди оценивают свой вес либо по существующим «нормам», рассчитанным на «среднего», среднестатистического человека (табл. 1), либо сравнивают себя с кем-либо из окружающих. Однако и тот и другой подходы к определению нормальной массы тела совершенно неприемлемы.

Дело в том, что «среднего» человека вообще не существует в природе, и каждый из нас отличается своими особенностями, в частности генотипическими (включая тип телосложения, характер обмена веществ и пр.), состоянием и уровнем здоровья и т.д. Например, при одинаковой длине тела нормальная масса у астеника может диагностироваться для гиперстеника как «дефицит массы тела», а нормальная масса для гиперстеника будет для астеника проявлением ожирения различной степени. Следовательно, «нормальный вес» у каждого человека должен быть свой. Главным же критерием его должны быть хорошие самочувствие и состояние здоровья, достаточная переносимость физических нагрузок, а также высокий уровень работоспособности и социальной адаптации.

Таблица 1. Стандартные формулы для оценки «нормальной» массы тела

Критерий

Способ оценки

Норма

Индекс Брока

Нормальная масса тела для людей ростом от 155 до 165 см равна длине тела, из которой вычитается сто единиц; при росте 166-175 вычитается 105, при росте 176 и выше — 110

Оставшееся количество единиц должно соответствовать нормальной массе тела в килограммах. Например: Рост — 170 см. Нормальный вес = 170 — 105 = 65 кг

Показатель Бонгарда

Нормальная масса тела (в кг) равна росту (в см), умноженному на окружность грудной клетки на уровне сосков (в см) и деленному на 240

Например: Окружность грудной клетки = 102 см, рост = 170 см. Нормальный вес = 170 х 102 / 240 = 72,3кг

Индекс Кетле

Массу тела в граммах делят на рост в сантиметрах

Норма для мужчин 350-400 г/см, для женщин 325-375 г/см

Индекс массы тела (ИМТ)

Массу тела в килограммах делят на квадрат роста в метрах

ИМТ = 18,5-23 — норма; 24-28 — ожирение 1 степени; 29-35 — ожирение 2 степени; выше 36 — ожирение 3 степени

Индекс телосложения

В = (Р 2 х К)\1000, где В — вес, Р — рост в см, К — индекс телосложения

Норма — 2,1 для женщин и 2,3 для мужчин

Так что же такое «нормальная масса тела»?

Основными составляющими нашего тела являются кости, активная масса и пассивная масса — преимущественно жир. Под «активной массой тела» подразумевают суммарную массу костей, мышц, внутренних органов, кожи (без подкожной жировой клет
чатки). Следует отметить, что кости являются чрезвычайно легкими частями нашего тела, а массу нашего тела преимущественно определяют жир и мышцы.

Мышечная ткань, которая составляет подавляющую долю «активной массы тела», сжигает калории даже когда человек находится в покое. А вот жир не нуждается в энергии — он не выполняет никаких физических функций. Это не означает, что он не имеет никакого физиологического значения: Как уже отмечалось (см. раздел 6.1.), он выполняет многочисленные важные функции. Содержание жира в организме для обеспечения этих функций и в дикой природе, и у наших предков вплоть до относительно недавнего времени регулировалось естественным путем — соотношением между «приходом» и «расходом». Если человек двигался мало, то определенная часть энергии потребленной пищи переходила в жир, человеку двигаться становилось труднее, поэтому и добыча пищи была затруднена. Следовательно, ему приходилось ограничиваться в еде до тех пор, пока его масса тела не нормализовывалась, его работоспособность восстанавливалась, и он мог опять добывать себе пищу. У современного же человека, который любит вкусно и обильно поесть (да и бегать за пищей не надо!), а двигается мало, запасы жира часто оказываются крайне избыточными. Накопления жира сопровождаются многочисленными неблагоприятными для здоровья последствиями, среди которых:

  • нарушения обмена веществ, следствиями которых являются: атеросклероз, сахарный диабет, заболевания суставов, печени, варикозные заболевания вен;
  • нарушения деятельности сердца , обусловленные крайне значительной нагрузкой на него;
  • затруднения деятельности внутренних органов из-за отложения жира непосредственно на них;
  • жир в организме является «отстойником шлаков и т.д.

Исключением является состояние крайнего истощения, когда у человека начинает уменьшаться и объем активной массы.

К сказанному следует добавить внешнюю эстетическую малопривлекательность страдающего ожирением человека.

Почему же возникает ожирение?

Сначала разберемся в самом механизме образования избытков жира в организме. Оказывается, жировые клетки исключительно консервативны и, раз возникнув, исчезают уже с огромным трудом. Принципиально важно, что важнейшими возрастными периодами, когда образуются жировые клетки, являются внутриутробный (т.е. во время развития самого плода) и первые три года после рождения ребенка. К сожалению, в обыденной жизни именно в эти возрастные периоды все делается для того, чтобы в организме еще плода и ребенка образовалось как можно больше жировых клеток — и беременную, и малыша пытаются накормить как можно плотнее. В течение последующих периодов возрастного развития благодаря усиленному росту избыток сформировавшихся жировых клеток не бросается в глаза, но когда рост останавливается (у девушек это происходит около 20 — 22 лет, у молодых людей в 22 — 25), или человек заметно снижает свою двигательную активность, или вмешиваются определенные гормональные факторы (как это бывает в возрасте полового созревания у девушек) — эти клетки начинают многократно увеличиваться в размерах. Это и есть ожирение. Его называют первичны м, так как оно связано с нарушением соотношения приход/расход с преобладанием первой части этого соотношения: человек ест много, а энергии расходует мало.

С возрастом, когда течение обменных процессов замедляется, пристрастие к еде не уменьшается, а двигательная активность прогрессивно снижается, соотношение все больше и больше склоняется в сторону преобладания прихода. В этом случае происходит жировое перерождение мышечной ткани, когда мышечные волокна замещаются жировой тканью. Это не означает, что возрастное повышение массы тела закономерно — по мнению акад. Н.М. Амосова, и в 60 — 70 лет у ведущего здоровый активный образ жизни человека она должна быть такой же, как в 25 — 30 лет.

Описанные последствия переедания и малоподвижности грозят не всем, так как у разных людей тип энергетики отличается, что обусловлено (у здоровых людей) преимущественно генетическими факторами и образом жизни матери в период беременности. Так, у худых энергетический обмен в единицу времени идет более активно, поэтому, например, у здорового человека такой конституции после плотной еды он возрастает практически вдвое, а у тучного — еле заметно. На действие холода полные люди не отвечают таким же повышением энергетических затрат, как худые. Следовательно, при прочих равных условиях из потребленной пищи тучный человек усваивает энергии больше, чем ему это необходимо для поддержания жизнедеятельности и выполнения повседневных дел.

В зависимости от выраженности избыточной жировой массы ожирение классифицируют следующим образом. При превышении массы тела в пределах 9% говорят об избыточной массе тела. Как I степень ожирения рассматривают превышение массы в пределах 10-29%, II степень 30-49%, III 50-99% и, наконец, IV 100 и более процентов избыточной массы тела.

С точки зрения классической механики масса тела не зависит от его движения. Если масса покоящегося тела равна m 0 , то и для движущегося тела эта масса останется точно такой же. Теория относительности показывает, что в действительности это не так. Масса тела т , движущегося со скоростью v, выражается через массу покоя следующим образом:

m = m 0 / √(1 - v 2 /c 2) (5)

Отметим сразу же, что скорость, фигурирующая в формуле (5), может быть измерена в любой инерциальной системе. В разных инерциальных системах тело имеет разную скорость, в разных инерциальных системах у него будет также и разная масса.

Масса — такая же относительная величина, как скорость, время, расстояние. Нельзя говорить о величине массы, пока не будет фиксирована система отсчета, в которой мы изучаем тело.

Из сказанного ясно, что, описывая тело, нельзя просто сказать, что его масса такая-то. Например, предложение «масса шарика 10 г» с точки зрения теории относительности совершенно неопределенно. Численное значение массы шарика ничего еще не говорит нам до тех пор, пока не будет указана инерциальная система, по отношению к которой измерена эта масса. Обычно масса тела задается в инерциальной системе, связанной с самим телом, т. е. задается масса покоя.

В табл. 6 приведена зависимость массы тела от его скорости. При этом предполагается, что масса покоящегося тела составляет 1 а. Скорости меньше 6000 км/сек в таблице не приводятся, так как при таких скоростях отличие массы от массы покоя ничтожно мало. При больших же скоростях эта разница становится уже заметной. Чем больше скорость тела, тем больше его масса. Так, например, при движении со скоростью 299 700 км/сек масса тела увеличивается уже почти в 41 раз. При больших скоростях даже ничтожное увеличение скорости значительно увеличивает массу тела. Это особенно заметно на рис. 41, где графически изображена зависимость массы от скорости.

Рис. 41. Зависимость массы от скорости (масса покоя тела равна 1 г)

В классической механике изучаются только медленные движения, для которых масса тела совершенно незначительно отличается от массы покоя. При изучении медленных движений массу тела можем считать равной массе покоя. Ошибка, которую мы при этом совершаем, практически незаметна.

Если скорость движения тела приближается к скорости света, то масса при этом растет неограниченно или, как говорят, масса тела становится бесконечной. Только в одном единственном случае тело может приобрести скорость, равную скорости света.
Из формулы (5) видно, что в том случае, если тело будет двигаться со скоростью света, т. е. если v = с и √(1 - v 2 /c 2), то должна быть равна нулю и величина m 0 .

Если бы этого не было, то формула (5) потеряла бы всякий смысл, так как деление конечного числа на нуль — недопустимая операция. Конечное число, деленное на нуль, равняется бесконечности — результат, который не имеет определенного физического смысла. Однако мы можем осмыслить выражение «нуль, деленный на нуль». Отсюда и следует, что в точности со скоростью света могут двигаться только объекты, у которых масса покоя равняется нулю. Телами в обычном понимании такие объекты называть нельзя.

Равенство массы покоя нулю означает, что тело с такой массой вообще не может покоиться, а должно всегда двигаться со скоростью с. Объект с нулевой массой покоя, то свет, точнее говоря, фотоны (кванты света). Фотоны никогда и ни в одной инерциальной системе не могут покоиться, они всегда движутся со скоростью с. Тела с массой покоя, отличной от нуля, могут находиться в покое или двигаться с различными скоростями, но с меньшими скоростями света. Скорости света они никогда не могут достигнуть.