Неорганические кислоты и их соли таблица. Химические свойства кислот

Классификация неорганических веществ с примерами соединений

Теперь проанализируем представленную выше классификационную схему более детально.

Как мы видим, прежде всего все неорганические вещества делятся на простые и сложные :

Простыми веществами называют такие вещества, которые образованы атомами только одного химического элемента. Например, простыми веществами являются водород H 2 , кислород O 2 , железо Fe, углерод С и т.д.

Среди простых веществ различают металлы , неметаллы и благородные газы:

Металлы образованы химическими элементами, расположенными ниже диагонали бор-астат, а также всеми элементами, находящимися в побочных группах.

Благородные газы образованы химическими элементами VIIIA группы.

Неметаллы образованы соответственно химическими элементами, расположенными выше диагонали бор-астат, за исключением всех элементов побочных подгрупп и благородных газов, расположенных в VIIIA группе:

Названия простых веществ чаще всего совпадают с названиями химических элементов, атомами которых они образованы. Однако для многих химических элементов широко распространено такое явление, как аллотропия. Аллотропией называют явление, когда один химический элемент способен образовывать несколько простых веществ. Например, в случае химического элемента кислорода возможно существование молекулярных соединений с формулами O 2 и O 3 . Первое вещество принято называть кислородом так же, как и химический элемент, атомами которого оно образовано, а второе вещество (O 3) принято называть озоном. Под простым веществом углеродом может подразумеваться любая из его аллотропных модификаций, например, алмаз, графит или фуллерены. Под простым веществом фосфором могут пониматься такие его аллотропные модификации, как белый фосфор, красный фосфор, черный фосфор.

Сложные вещества

Сложными веществами называют вещества, образованные атомами двух или более химических элементов.

Так, например, сложными веществами являются аммиак NH 3 , серная кислота H 2 SO 4 , гашеная известь Ca(OH) 2 и бесчисленное множество других.

Среди сложных неорганических веществ выделяют 5 основных классов, а именно оксиды, основания, амфотерные гидроксиды, кислоты и соли:

Оксиды — сложные вещества, образованные двумя химическими элементами, один из которых кислород в степени окисления -2.

Общая формула оксидов может быть записана как Э x O y , где Э — символ какого-либо химического элемента.

Номенклатура оксидов

Название оксида химического элемента строится по принципу:

Например:

Fe 2 O 3 — оксид железа (III); CuO — оксид меди (II); N 2 O 5 — оксид азота (V)

Нередко можно встретить информацию о том, что в скобках указывается валентность элемента, однако же это не так. Так, например, степень окисления азота N 2 O 5 равна +5, а валентность, как это ни странно, равна четырем.

В случае, если химический элемент имеет единственную положительную степень окисления в соединениях, в таком случае степень окисления не указывается. Например:

Na 2 O — оксид натрия; H 2 O — оксид водорода; ZnO — оксид цинка.

Классификация оксидов

Оксиды по их способности образовывать соли при взаимодействии с кислотами или основаниями подразделяют соответственно на солеобразующие и несолеобразующие .

Несолеобразующих оксидов немного, все они образованы неметаллами в степени окисления +1 и +2. Список несолеобразующих оксидов следует запомнить: CO, SiO, N 2 O, NO.

Солеобразующие оксиды в свою очередь подразделяются на основные , кислотные и амфотерные .

Основными оксидами называют такие оксиды, которые при взаимодействии с кислотами (или кислотными оксидами) образуют соли. К основным оксидам относят оксиды металлов в степени окисления +1 и +2, за исключением оксидов BeO, ZnO, SnO, PbO.

Кислотными оксидами называют такие оксиды, которые при взаимодействии с основаниями (или основными оксидами) образуют соли. Кислотными оксидами являются практически все оксиды неметаллов за исключением несолеобразующих CO, NO, N 2 O, SiO, а также все оксиды металлов в высоких степенях окисления (+5, +6 и +7).

Амфотерными оксидами называют оксиды, которые могут реагировать как с кислотами, так и основаниями, и в результате этих реакций образуют соли. Такие оксиды проявляют двойственную кислотно-основную природу, то есть могут проявлять свойства как кислотных, так и основных оксидов. К амфотерным оксидам относятся оксиды металлов в степенях окисления +3, +4, а также в качестве исключений оксиды BeO, ZnO, SnO, PbO.

Некоторые металлы могут образовывать все три вида солеобразующих оксидов. Например, хром образует основный оксид CrO, амфотерный оксид Cr 2 O 3 и кислотный оксид CrO 3 .

Как можно видеть, кислотно-основные свойства оксидов металлов напрямую зависят от степени окисления металла в оксиде: чем больше степень окисления, тем сильнее выражены кислотные свойства.

Основания

Основания — соединения с формулой вида Me(OH) x , где x чаще всего равен 1 или 2.

Классификация оснований

Основания классифицируют по количеству гидроксогрупп в одной структурной единице.

Основания с одной гидроксогруппой, т.е. вида MeOH, называют однокислотными основаниями, с двумя гидроксогруппами, т.е. вида Me(OH) 2 , соответственно, двухкислотными и т.д.

Также основания подразделяют на растворимые (щелочи) и нерастворимые.

К щелочам относятся исключительно гидроксиды щелочных и щелочно-земельных металлов, а также гидроксид таллия TlOH.

Номенклатура оснований

Название основания строится по нижеследующему принципу:

Например:

Fe(OH) 2 — гидроксид железа (II),

Cu(OH) 2 — гидроксид меди (II).

В тех случаях, когда металл в сложных веществах имеет постоянную степень окисления, указывать её не требуется. Например:

NaOH — гидроксид натрия,

Ca(OH) 2 — гидроксид кальция и т.д.

Кислоты

Кислоты — сложные вещества, молекулы которых содержат атомы водорода, способные замещаться на металл.

Общая формула кислот может быть записана как H x A, где H — атомы водорода, способные замещаться на металл, а A — кислотный остаток.

Например, к кислотам относятся такие соединения, как H 2 SO 4 , HCl, HNO 3 , HNO 2 и т.д.

Классификация кислот

По количеству атомов водорода, способных замещаться на металл, кислоты делятся на:

— одноосновные кислоты : HF, HCl, HBr, HI, HNO 3 ;

— двухосновные кислоты : H 2 SO 4 , H 2 SO 3 , H 2 CO 3 ;

— трехосновные кислоты : H 3 PO 4 , H 3 BO 3 .

Следует отметить, что количество атомов водорода в случае органических кислот чаще всего не отражает их основность. Например, уксусная кислота с формулой CH 3 COOH, несмотря на наличие 4-х атомов водорода в молекуле, является не четырех-, а одноосновной. Основность органических кислот определяется количеством карбоксильных групп (-COOH) в молекуле.

Также по наличию кислорода в молекулах кислоты подразделяют на бескислородные (HF, HCl, HBr и т.д.) и кислородсодержащие (H 2 SO 4 , HNO 3 , H 3 PO 4 и т.д.). Кислородсодержащие кислоты называют также оксокислотами .

Более детально про классификацию кислот можно почитать .

Номенклатура кислот и кислотных остатков

Нижеследующий список названий и формул кислот и кислотных остатков обязательно следует выучить.

В некоторых случаях облегчить запоминание может ряд следующих правил.

Как можно видеть из таблицы выше, построение систематических названий бескислородных кислот выглядит следующим образом:

Например:

HF — фтороводородная кислота;

HCl — хлороводородная кислота;

H 2 S — сероводородная кислота.

Названия кислотных остатков бескислородных кислот строятся по принципу:

Например, Cl — — хлорид, Br — — бромид.

Названия кислородсодержащих кислот получают добавлением к названию кислотообразующего элемента различных суффиксов и окончаний. Например, если кислотообразующий элемент в кислородсодержащей кислоте имеет высшую степень окисления, то название такой кислоты строится следующим образом:

Например, серная кислота H 2 S +6 O 4 , хромовая кислота H 2 Cr +6 O 4 .

Все кислородсодержащие кислоты могут быть также классифицированы как кислотные гидроксиды, поскольку в их молекулах обнаруживаются гидроксогруппы (OH). Например, это видно из нижеследующих графических формул некоторых кислородсодержащих кислот:

Таким образом, серная кислота иначе может быть названа как гидроксид серы (VI), азотная кислота — гидроксид азота (V), фосфорная кислота — гидроксид фосфора (V) и т.д. При этом число в скобках характеризует степень окисления кислотообразующего элемента. Такой вариант названий кислородсодержащих кислот многим может показаться крайне непривычным, однако же изредка такие названия можно встретить в реальных КИМах ЕГЭ по химии в заданиях на классификацию неорганических веществ.

Амфотерные гидроксиды

Амфотерные гидроксиды — гидроксиды металлов, проявляющие двойственную природу, т.е. способные проявлять как свойства кислот, так и свойства оснований.

Амфотерными являются гидроксиды металлов в степенях окисления +3 и +4 (как и оксиды).

Также в качестве исключений к амфотерным гидроксидам относят соединения Be(OH) 2 , Zn(OH) 2 , Sn(OH) 2 и Pb(OH) 2 , несмотря на степень окисления металла в них +2.

Для амфотерных гидроксидов трех- и четырехвалентных металлов возможно существование орто- и мета-форм, отличающихся друг от друга на одну молекулу воды. Например, гидроксид алюминия (III) может существовать в орто-форме Al(OH) 3 или мета-форме AlO(OH) (метагидроксид).

Поскольку, как уже было сказано, амфотерные гидроксиды проявляют как свойства кислот, так и свойства оснований, их формула и название также могут быть записаны по-разному: либо как у основания, либо как у кислоты. Например:

Соли

Так, например, к солям относятся такие соединения как KCl, Ca(NO 3) 2 , NaHCO 3 и т.д.

Представленное выше определение описывает состав большинства солей, однако же существуют соли, не попадающие под него. Например, вместо катионов металлов в состав соли могут входить катионы аммония или его органические производные. Т.е. к солям относятся такие соединения, как, например, (NH 4) 2 SO 4 (сульфат аммония), + Cl — (хлорид метиламмония) и т.д.

Классификация солей

С другой стороны, соли можно рассматривать как продукты замещения катионов водорода H + в кислоте на другие катионы или же как продукты замещения гидроксид-ионов в основаниях (или амфотерных гидроксидах) на другие анионы.

При полном замещении образуются так называемые средние или нормальные соли. Например, при полном замещении катионов водорода в серной кислоте на катионы натрия образуется средняя (нормальная) соль Na 2 SO 4 , а при полном замещении гидроксид-ионов в основании Ca(OH) 2 на кислотные остатки нитрат-ионы образуется средняя (нормальная) соль Ca(NO 3) 2 .

Соли, получаемые неполным замещением катионов водорода в двухосновной (или более) кислоте на катионы металла, называют кислыми. Так, при неполном замещении катионов водорода в серной кислоте на катионы натрия образуется кислая соль NaHSO 4 .

Соли, которые образуются при неполном замещении гидроксид-ионов в двухкислотных (или более) основаниях, называют осно вными солями. Например, при неполном замещении гидроксид-ионов в основании Ca(OH) 2 на нитрат-ионы образуется осно вная соль Ca(OH)NO 3 .

Соли, состоящие из катионов двух разных металлов и анионов кислотных остатков только одной кислоты, называют двойными солями . Так, например, двойными солями являются KNaCO 3 , KMgCl 3 и т.д.

Если соль образована одним типом катионов и двумя типами кислотных остатков, такие соли называют смешанными. Например, смешанными солями являются соединения Ca(OCl)Cl, CuBrCl и т.д.

Существуют соли, которые не попадают под определение солей как продуктов замещения катионов водорода в кислотах на катионы металлов или продуктов замещения гидроксид-ионов в основаниях на анионы кислотных остатков. Это — комплексные соли. Так, например, комплексными солями являются тетрагидроксоцинкат- и тетрагидроксоалюминат натрия с формулами Na 2 и Na соответственно. Распознать комплексные соли среди прочих чаще всего можно по наличию квадратных скобок в формуле. Однако нужно понимать, что, чтобы вещество можно было отнести к классу солей, в его состав должны входить какие-либо катионы, кроме (или вместо) H + , а из анионов должны быть какие-либо анионы помимо (или вместо) OH — . Так, например, соединение H 2 не относится к классу комплексных солей, поскольку при его диссоциации из катионов в растворе присутствуют только катионы водорода H + . По типу диссоциации данное вещество следует скорее классифицировать как бескислородную комплексную кислоту. Аналогично, к солям не относится соединение OH, т.к. данное соединение состоит из катионов + и гидроксид-ионов OH — , т.е. его следует считать комплексным основанием.

Номенклатура солей

Номенклатура средних и кислых солей

Название средних и кислых солей строится по принципу:

Если степень окисления металла в сложных веществах постоянная, то ее не указывают.

Названия кислотных остатков были даны выше при рассмотрении номенклатуры кислот.

Например,

Na 2 SO 4 — сульфат натрия;

NaHSO 4 — гидросульфат натрия;

CaCO 3 — карбонат кальция;

Ca(HCO 3) 2 — гидрокарбонат кальция и т.д.

Номенклатура основных солей

Названия основных солей строятся по принципу:

Например:

(CuOH) 2 CO 3 — гидроксокарбонат меди (II);

Fe(OH) 2 NO 3 — дигидроксонитрат железа (III).

Номенклатура комплексных солей

Номенклатура комплексных соединений значительно сложнее, и для сдачи ЕГЭ многого знать из номенклатуры комплексных солей не нужно.

Следует уметь называть комплексные соли, получаемые взаимодействием растворов щелочей с амфотерными гидроксидами. Например:

*Одинаковыми цветами в формуле и названии обозначены соответствующие друг другу элементы формулы и названия.

Тривиальные названия неорганических веществ

Под тривиальными названиями понимают названия веществ не связанные, либо слабо связанные с их составом и строением. Тривиальные названия обусловлены, как правило, либо историческими причинами либо физическими или химическими свойствами данных соединений.

Список тривиальных названий неорганических веществ, которые необходимо знать:

Na 3 криолит
SiO 2 кварц, кремнезем
FeS 2 пирит, железный колчедан
CaSO 4 ∙2H 2 O гипс
CaC2 карбид кальция
Al 4 C 3 карбид алюминия
KOH едкое кали
NaOH едкий натр, каустическая сода
H 2 O 2 перекись водорода
CuSO 4 ∙5H 2 O медный купорос
NH 4 Cl нашатырь
CaCO 3 мел, мрамор, известняк
N 2 O веселящий газ
NO 2 бурый газ
NaHCO 3 пищевая (питьевая) сода
Fe 3 O 4 железная окалина
NH 3 ∙H 2 O (NH 4 OH) нашатырный спирт
CO угарный газ
CO 2 углекислый газ
SiC карборунд (карбид кремния)
PH 3 фосфин
NH 3 аммиак
KClO 3 бертолетова соль (хлорат калия)
(CuOH) 2 CO 3 малахит
CaO негашеная известь
Ca(OH) 2 гашеная известь
прозрачный водный раствор Ca(OH) 2 известковая вода
взвесь твердого Ca(OH) 2 в его водном растворе известковое молоко
K 2 CO 3 поташ
Na 2 CO 3 кальцинированная сода
Na 2 CO 3 ∙10H 2 O кристаллическая сода
MgO жженая магнезия

Кислоты – это сложные вещества, молекулы которых состоят из атомов водорода (способных замещаться атомами металла), связанных с кислотным остатком.

Общая характеристика

Кислоты классифицируются на бескислородные и кислородосодержащие, а также на органические и неорганические.

Рис. 1. Классификация кислот – бескислородные и кислородосодержащие.

Бескислородные кислоты – это растворы в воде таких бинарных соединений, как галогеноводороды или сероводород. В растворе полярная ковалентная связь между водородом и электроотрицательным элементом поляризуется под действием дипольных молекул воды, и молекулы распадаются на ионы. присутствие ионов водорода в веществе и позволяет называть водные растворы этих бинарных соединений кислотами.

Кислоты называют от названия бинарного соединения прибавлением окончания -ная. например, HF – фтороводородная кислота. Анион кислоты называют по названию элемента прибавлением окончания -ид, например, Cl – хлорид.

Кислородосодержащие кислоты (оксокислоты) – это кислотные гидроксиды, диссоциирующие по кислотному типу, то есть как протолиты. Общая формула их – Э(ОН)mOn, где Э – неметалл или металл с переменной валентностью в высшей степени окисления. при условии, когда n равно 0, то кислота слабая (H 2 BO 3 – борная), если n=1, то кислота либо слабая, либо средней силы (H 3 PO 4 -ортофосфорная), если n больше или равно 2, то кислота считается сильной (H 2 SO 4).

Рис. 2. Серная кислота.

Кислотным гидроксидам соответствуют кислотные оксиды или ангидриды кислот, например, серной кислоте соответствует серный ангидрид SO 3 .

Химические свойства кислот

Для кислот характерен ряд свойств, которые отличают их от солей и других химических элементов:

  • Действие на индикаторы. Как протолиты кислоты диссоциируют с образованием ионов H+, которые изменяют окраску индикаторов: фиолетовый раствор лакмуса становится красным, а оранжевый раствор метилоранжа становится розовым. Многоосновные кислоты диссоциируют ступенчато, причем каждая последующая стадия идет труднее предыдущей, так как на второй и третьей ступенях диссоциируют все более слабые электролиты:

H 2 SO 4 =H+ +HSO 4 –

В зависимости от того, является ли кислота концентрированной или разбавленной зависит цвет индикатора. Так, например, при опускании лакмуса в концентрированную серную кислоту, индикатор становится красным, в разбавленной же серной кислоте цвет не изменится.

  • Реакция нейтрализации , то есть взаимодействие кислот с основаниями, в результате чего происходит образование соли и воды, идет всегда, если хотя бы один из реагентов сильный (основание или кислота). Реакция не идет, если кислота слабая, основание нерастворимо. Например, не идет реакция:

H 2 SiO 3 (слабая, нерастворимая в воде кислота)+ Cu(OH) 2 – реакция не идет

Но в других случаях реакция нейтрализации с этими реагентами идет:

H 2 SiO 3 +2KOH (щелочь)=K 2 SiO 3 +2H 2 O

  • Взаимодействие с основными и амфотерными оксидами:

Fe 2 O 3 +3H 2 SO 4 =Fe 2 (SO 4) 3 +3H 2 O

  • Взаимодействие кислот с металлами , стоящими в ряду напряжений левее водорода, приводит к процессу, в результате которого образуется соль, и выделяется водород. Эта реакция идет легко, если кислота достаточно сильная.

Азотная кислота и концентрированная серная кислоты реагируют с металлами за счет восстановления не водорода, а центрального атома:

Mg+H 2 SO 4 +MgSO 4 +H 2

  • Взаимодействие кислот с солями происходит, если в результате образуется слабая кислота. Если соль, реагирующая с кислотой, растворима в воде, то реакция пойдет также в том случае, если образуется нерастворимая соль:

Na 2 SiO 3 (растворимая соль слабой кислоты)+2HCl (сильная кислота)=H 2 SiO 3 (слабая нерастворимая кислота)+2NaCl (растворимая соль)

Многие кислоты находят применение в промышленности, например, уксусная кислота необходима для консервирования мясных и рыбных продуктов

Кислота Кислотный остаток
Формула Название Формула Название
HBr бромоводородная Br – бромид
HBrO 3 бромноватая BrO 3 – бромат
HCN циановодородная (синильная) CN – цианид
HCl хлороводородная (соляная) Cl – хлорид
HClO хлорноватистая ClO – гипохлорит
HClO 2 хлористая ClO 2 – хлорит
HClO 3 хлорноватая ClO 3 – хлорат
HClO 4 хлорная ClO 4 – перхлорат
H 2 CO 3 угольная HCO 3 – гидрокарбонат
CO 3 2– карбонат
H 2 C 2 O 4 щавелевая C 2 O 4 2– оксалат
CH 3 COOH уксусная CH 3 COO – ацетат
H 2 CrO 4 хромовая CrO 4 2– хромат
H 2 Cr 2 O 7 дихромовая Cr 2 O 7 2– дихромат
HF фтороводородная (плавиковая) F – фторид
HI иодоводородная I – иодид
HIO 3 иодноватая IO 3 – иодат
H 2 MnO 4 марганцовистая MnO 4 2– манганат
HMnO 4 марганцовая MnO 4 – перманганат
HNO 2 азотистая NO 2 – нитрит
HNO 3 азотная NO 3 – нитрат
H 3 PO 3 фосфористая PO 3 3– фосфит
H 3 PO 4 фосфорная PO 4 3– фосфат
HSCN тиоциановодородная (роданистая) SCN – тиоцианат (роданид)
H 2 S сероводородная S 2– сульфид
H 2 SO 3 сернистая SO 3 2– сульфит
H 2 SO 4 серная SO 4 2– сульфат

Окончание прил.

Приставки, наиболее часто употребляемые в названиях

Интерполяция справочных величин

Иногда необходимо узнать величину плотности или концентрации, не указанную в справочных таблицах. Искомый параметр можно найти методом интерполяции.



Пример

Для приготовления раствора HCl была взята имеющаяся в лаборатории кислота, плотность которой была определена ареометром. Она оказалась равной 1,082 г/см 3 .

По таблице справочника находим, что кислота плотностью 1,080 имеет массовую долю 16,74 %, а с 1,085 - 17,45 %. Чтобы найти массовую долю кислоты в имеющемся растворе, воспользуемся формулой для интерполяции:

где индекс 1 относится к более разбавленному раствору, а 2 - к более концентрированному.


Предисловие……………………………..………….……….…......3

1. Основные понятия титриметрических методов анализа……...7

2. Методы и способы титрования……………………….....……...9

3. Вычисление молярной массы эквивалентов.…………………16

4. Способы выражения количественного состава растворов

в титриметрии……………………………………………………..21

4.1. Решение типовых задач на способы выражения

количественного состава растворов……………….……25

4.1.1. Расчет концентрации раствора по известным массе и объему раствора………………………………………..26

4.1.1.1. Задачи для самостоятельного решения...29

4.1.2. Пересчет одной концентрации в другую………...30

4.1.2.1. Задачи для самостоятельного решения...34

5. Способы приготовления растворов…………………………...36

5.1. Решение типовых задач на приготовление растворов

различными способами…………………………………..39

5.2. Задачи для самостоятельного решения………………….48

6. Расчет результатов титриметрического анализа………..........51

6.1. Расчет результатов прямого и заместительного

титрования………………………………………………...51

6.2. Расчет результатов обратного титрования……………...56

7. Метод нейтрализации (кислотно-основное титрование)……59

7.1. Примеры решения типовых задач…...…………………..68

7.1.1. Прямое и заместительное титрование……………68

7.1.1.1. Задачи для самостоятельного решения…73

7.1.2. Обратное титрование……………………………..76

7.1.2.1. Задачи для самостоятельного решения…77

8. Метод окисления-восстановления (редоксиметрия)………...80

8.1. Задачи для самостоятельного решения………………….89

8.1.1. Окислительно-восстановительные реакции……..89

8.1.2. Расчет результатов титрования…………………...90

8.1.2.1. Заместительное титрование……………...90

8.1.2.2. Прямое и обратное титрование…………..92

9. Метод комплексообразования; комплексонометрия…...........94

9.1. Примеры решения типовых задач……………………...102

9.2. Задачи для самостоятельного решения………………...104

10. Метод осаждения………………………………………........106

10.1. Примеры решения типовых задач…………………….110

10.2. Задачи для самостоятельного решения……………….114

11. Индивидуальные задания по титриметрическим

методам анализа…………………………………………………117

11.1. План выполнения индивидуального задания………...117

11.2. Варианты индивидуальных заданий………………….123

Ответы к задачам ………..………………………………………124

Условные обозначения……………………………………….…127

Приложение……………………………………………………...128

УЧЕБНОЕ ИЗДАНИЕ

АНАЛИТИЧЕСКАЯ ХИМИЯ

Формула кислоты Название кислоты Название соли Соответствующий оксид
HCl Соляная Хлориды ----
HI Йодоводородная Иодиды ----
HBr Бромоводородная Бромиды ----
HF Плавиковая Фториды ----
HNO 3 Азотная Нитраты N 2 O 5
H 2 SO 4 Серная Сульфаты SO 3
H 2 SO 3 Сернистая Сульфиты SO 2
H 2 S Сероводородная Сульфиды ----
H 2 CO 3 Угольная Карбонаты CO 2
H 2 SiO 3 Кремниевая Силикаты SiO 2
HNO 2 Азотистая Нитриты N 2 O 3
H 3 PO 4 Фосфорная Фосфаты P 2 O 5
H 3 PO 3 Фосфористая Фосфиты P 2 O 3
H 2 CrO 4 Хромовая Хроматы CrO 3
H 2 Cr 2 O 7 Двухромовая Бихроматы CrO 3
HMnO 4 Марганцовая Перманганаты Mn 2 O 7
HClO 4 Хлорная Перхлораты Cl 2 O 7

Кислоты в лаборатории можно получить:

1) при растворении кислотных оксидов в воде:

N 2 O 5 + H 2 O → 2HNO 3 ;

CrO 3 + H 2 O → H 2 CrO 4 ;

2) при взаимодействии солей с сильными кислотами:

Na 2 SiO 3 + 2HCl → H 2 SiO 3 ¯ + 2NaCl;

Pb(NO 3) 2 + 2HCl → PbCl 2 ¯ + 2HNO 3 .

Кислоты взаимодействуют с металлами, основаниями, основными и амфотерными оксидами, амфотерными гидроксидами и солями:

Zn + 2HCl → ZnCl 2 + H 2 ­;

Cu + 4HNO 3 (концентр.) → Cu(NO 3) 2 + 2NO 2 + 2H 2 O;

H 2 SO 4 + Ca(OH) 2 → CaSO 4 ¯ + 2H 2 O;

2HBr + MgO → MgBr 2 + H 2 O;

6HI + Al 2 O 3 → 2AlBr 3 + 3H 2 O;

H 2 SO 4 + Zn(OH) 2 → ZnSO 4 + 2H 2 O;

AgNO 3 + HCl → AgCl¯ + HNO 3 .

Обычно кислоты взаимодействуют только с теми металлами, которые в электрохимическом ряду напряжения стоят до водорода, при этом выделяется свободный водород. С малоактивными металлами (в электрохимическом ряду напряжения стоят после водорода) такие кислоты не взаимодействуют. Кислоты, являющиеся сильными окислителями (азотная, концентрированная серная), реагируют со всеми металлами, за исключением благородных (золото, платина), но при этом выделяется не водород, а вода и оксид, например, SO 2 или NO 2 .

Солью называют продукт замещения водорода в кислоте на металл.

Все соли делятся на:

средние – NaCl, K 2 CO 3 , KMnO 4 , Ca 3 (PO 4) 2 и др.;

кислые – NaHCO 3 , KH 2 PO 4 ;

основные – CuOHCl, Fe(OH) 2 NO 3 .

Средней солью называется продукт полного замещения ионов водорода в молекуле кислоты атомами металла.

Кислые соли содержат атомы водорода, способные участвовать в химических обменных реакциях. В кислых солях произошло неполное замещение атомов водорода атомами металла.

Основные соли – это продукт неполного замещения гидроксо-групп оснований многовалентных металлов кислотными остатками. Основные соли всегда содержат гидроксогруппу.

Средние соли получают взаимодействием:

1) кислоты и основания:

NaOH + HCl → NaCl + H 2 O;

2) кислоты и основного оксида:



H 2 SO 4 + CaO → CaSO 4 ¯ + H 2 O;

3) кислотного оксида и основания:

SO 2 + 2KOH → K 2 SO 3 + H 2 O;

4) кислотного и основного оксидов:

MgO + CO 2 → MgCO 3 ;

5) металла с кислотой:

Fe + 6HNO 3 (концентр.) → Fe(NO 3) 3 + 3NO 2 + 3H 2 O;

6) двух солей:

AgNO 3 + KCl → AgCl¯ + KNO 3 ;

7) соли и кислоты:

Na 2 SiO 3 + 2HCl → 2NaCl + H 2 SiO 3 ¯;

8) соли и щелочи:

CuSO 4 + 2CsOH → Cu(OH) 2 ¯ + Cs 2 SO 4 .

Кислые соли получают:

1) при нейтрализации многоосновных кислот щелочью в избытке кислоты:

H 3 PO 4 + NaOH → NaH 2 PO 4 + H 2 O;

2) при взаимодействии средних солей с кислотами:

СaCO 3 + H 2 CO 3 → Ca(HCO 3) 2 ;

3) при гидролизе солей, образованных слабой кислотой:

Na 2 S + H 2 O → NaHS + NaOH.

Основные соли получают:

1) при реакции между основанием многовалентного металла и кислотой в избытке основания:

Cu(OH) 2 + HCl → CuOHCl + H 2 O;

2) при взаимодействии средних солей со щелочами:

СuCl 2 + KOH → CuOHCl + KCl;

3) при гидролизе средних солей, образованных слабыми основаниями:

AlCl 3 +H 2 O → AlOHCl 2 + HCl.

Соли могут взаимодействовать с кислотами, щелочами, другими солями, с водой (реакция гидролиза):

2H 3 PO 4 + 3Ca(NO 3) 2 → Ca 3 (PO 4) 2 ¯ + 6HNO 3 ;

FeCl 3 + 3NaOH → Fe(OH) 3 ¯ + 3NaCl;

Na 2 S + NiCl 2 → NiS¯ + 2NaCl.

В любом случае реакция ионного обмена идет до конца только тогда, когда образуется малорастворимое, газообразное или слабо диссоциирующее соединение.

Кроме того, соли могут взаимодействовать с металлами при условии, что металл более активный (имеет более отрицательный электродный потенциал), чем металл, входящий в состав соли:

Fe + CuSO 4 → FeSO 4 + Cu.

Для солей также характерны реакции разложения:

BaCO 3 → BaO + CO 2 ­;

2KClO 3 → 2KCl + 3O 2 ­.

Лабораторная работа №1

ПОЛУЧЕНИЕ И СВОЙСТВА

ОСНОВАНИЙ, КИСЛОТ И СОЛЕЙ

Опыт 1. Получение щелочей.

1.1. Взаимодействие металла с водой.

В кристаллизатор или фарфоровую чашечку налейте дистиллированной воды (примерно 1/2 сосуда). Получите у преподавателя кусочек металлического натрия, предварительно подсушенного фильтровальной бумагой. Бросьте кусочек натрия в кристаллизатор с водой. По окончании реакции добавьте несколько капель фенолфталеина. Отметьте наблюдаемые явления, составьте уравнение реакции. Назовите полученное соединение, запишите его структурную формулу.



1.2. Взаимодействие оксида металла с водой.

В пробирку налейте дистиллированной воды (1/3 пробирки) и поместите в нее комочек CaO, тщательно перемешайте, добавьте 1 – 2 капли фенолфталеина. Отметьте наблюдаемые явления, напишите уравнение реакции. Назовите полученное соединение, дайте его структурную формулу.

Кислоты - электролиты, при диссоциации которых из положительных ионов образуются только ионы H + :

HNO 3 ↔ H + + NO 3 — ;

CH 3 COOH↔ H + +CH 3 COO — .

Все кислоты классифицируют на неорганические и органические (карбоновые), которые также имеют свои собственные (внутренние) классификации.

При нормальных условияхзначительное количество неорганических кислот существуют в жидком состоянии, некоторые - в твёрдом состоянии (H 3 PO 4 , H 3 BO 3).

Органические кислоты с числом атомов углерода до 3 представляют собой легкоподвижные бесцветные жидкости с характерным резким запахом; кислоты с 4-9 атомами углерода — маслянистые жидкости с неприятным запахом, а кислоты с большим количеством атомов углерода— твёрдые вещества, нерастворимые в воде.

Химические формулы кислот

Химические формулы кислот рассмотрим на примере нескольких представителей (как неорганических, так и органических): хлороводородной кислоте -HCl, серной кислоте - H 2 SO 4 , фосфорной кислоте — H 3 PO 4 , уксусной кислоте - CH 3 COOH и бензойной кислоте - C 6 H 5 COOH. Химическая формула показывает качественный и количественный состав молекулы (сколько и каких атомов входит в конкретное соединение) По химической формуле можно вычислить молекулярную массу кислот (Ar(H) = 1 а.е.м., Ar(Cl) = 35,5 а.е.м., Ar(P) = 31 а.е.м., Ar(O) = 16 а.е.м., Ar(S) = 32 а.е.м., Ar(C) = 12 а.е.м.):

Mr(HCl) = Ar(H) + Ar(Cl);

Mr(HCl) = 1 + 35,5 = 36,5.

Mr(H 2 SO 4) = 2×Ar(H) + Ar(S) + 4×Ar(O);

Mr(H 2 SO 4) = 2×1 + 32 + 4×16 = 2 + 32 + 64 = 98.

Mr(H 3 PO 4) = 3×Ar(H) + Ar(P) + 4×Ar(O);

Mr(H 3 PO 4) = 3×1 + 31 + 4×16 = 3 + 31 + 64 = 98.

Mr(CH 3 COOH) = 3×Ar(С) + 4×Ar(H) + 2×Ar(O);

Mr(CH 3 COOH) = 3×12 + 4×1 + 2×16 = 36 + 4 + 32 = 72.

Mr(C 6 H 5 COOH) = 7×Ar(C) + 6×Ar(H) + 2×Ar(O);

Mr(C 6 H 5 COOH) = 7×12 + 6×1 + 2×16 = 84 + 6 + 32 = 122.

Структурные (графические) формулы кислот

Структурная (графическая) формула вещества является более наглядной. Она показывает то, как связаны атомы между собой внутри молекулы. Укажем структурные формулы каждого из вышеуказанных соединений:

Рис. 1. Структурная формула хлороводородной кислоты.

Рис. 2. Структурная формула серной кислоты.

Рис. 3. Структурная формула фосфорной кислоты.

Рис. 4. Структурная формула уксусной кислоты.

Рис. 5. Структурная формула бензойной кислоты.

Ионные формулы

Все неорганические кислоты являются электролитами, т.е. способны диссоциировать в водном растворе на ионы:

HCl ↔ H + + Cl — ;

H 2 SO 4 ↔ 2H + + SO 4 2- ;

H 3 PO 4 ↔ 3H + + PO 4 3- .

Примеры решения задач

ПРИМЕР 1

Задание При полном сгорании 6 г органического вещества образовалось 8,8 г оксида углерода (IV) и 3,6 г воды. Определите молекулярную формулу сожженного вещества, если известно, что его молярная масса равна 180 г/моль.
Решение Составим схему реакции сгорания органического соединения обозначив количество атомов углерода, водорода и кислорода за «x», «у»и «z» соответственно:

C x H y O z + O z →CO 2 + H 2 O.

Определим массы элементов, входящих в состав этого вещества. Значения относительных атомных масс, взятые из Периодической таблицы Д.И. Менделеева, округлим до целых чисел: Ar(C) = 12 а.е.м., Ar(H) = 1 а.е.м., Ar(O) = 16 а.е.м.

m(C) = n(C)×M(C) = n(CO 2)×M(C) = ×M(C);

m(H) = n(H)×M(H) = 2×n(H 2 O)×M(H) = ×M(H);

Рассчитаем молярные массы углекислого газа и воды. Как известно, молярная масса молекулы равна сумме относительных атомных масс атомов, входящих в состав молекулы (M = Mr):

M(CO 2) = Ar(C) + 2×Ar(O) = 12+ 2×16 = 12 + 32 = 44 г/моль;

M(H 2 O) = 2×Ar(H) + Ar(O) = 2×1+ 16 = 2 + 16 = 18 г/моль.

m(C) = ×12 = 2,4 г;

m(H) = 2×3,6 / 18 ×1= 0,4 г.

m(O) = m(C x H y O z) - m(C) - m(H) = 6 - 2,4 - 0,4 = 3,2 г.

Определим химическую формулу соединения:

x:y:z = m(C)/Ar(C) : m(H)/Ar(H) : m(O)/Ar(O);

x:y:z= 2,4/12:0,4/1:3,2/16;

x:y:z= 0,2: 0,4: 0,2 = 1: 2: 1.

Значит простейшая формула соединения CH 2 Oи молярную массу 30 г/моль .

Чтобы найти истинную формулу органического соединения найдем отношение истинной и полученной молярных масс:

M substance / M(CH 2 O) = 180 / 30 = 6.

Значит индексы атомов углерода, водорода и кислорода должны быть в 6 раз выше, т.е. формула вещества будет иметь вид C 6 H 12 O 6 . Это глюкоза или фруктоза.

Ответ C 6 H 12 O 6

ПРИМЕР 2

Задание Выведите простейшую формулу соединения, в котором массовая доля фосфора составляет 43,66%, а массовая доля кислорода - 56,34%.
Решение Массовая доля элемента Х в молекуле состава НХ рассчитывается по следующей формуле:

ω (Х) = n × Ar (X) / M (HX) × 100%.

Обозначим число атомов фосфора в молекуле через «х», а число атомов кислорода через «у»

Найдем соответствующие относительные атомные массы элементов фосфора и кислорода (значения относительных атомных масс, взятые из Периодической таблицы Д.И. Менделеева, округлим до целых чисел).

Ar(P) = 31; Ar(O) = 16.

Процентное содержание элементов разделим на соответствующие относительные атомные массы. Таким образом мы найдем соотношения между числом атомов в молекуле соединения:

x:y = ω(P)/Ar(P) : ω (O)/Ar(O);

x:y = 43,66/31: 56,34/16;

x:y: = 1,4: 3,5 = 1: 2,5 = 2: 5.

Значит простейшая формула соединения фосфора и кислорода имеет вид P 2 O 5 . Это оксид фосфора (V).

Ответ P 2 O 5