Решение задач с помощью формулы полной вероятности и формулы байеса. Формула полной вероятности. Формулы Бейеса. Примеры решения задач

Краткая теория

Если событие наступает только при условии появления одного из событий образующих полную группу несовместных событий, то равна сумме произведений вероятностей каждого из событий на соответствующую условную вероятность кошелек .

При этом события называются гипотезами, а вероятности – априорными. Эта формула называется формулой полной вероятности.

Формула Байеса применяется при решении практических задач, когда событие , появляющееся совместно с каким-либо из событий образующих полную группу событий произошло и требуется провести количественную переоценку вероятностей гипотез . Априорные (до опыта) вероятности известны. Требуется вычислить апостериорные (после опыта) вероятности, т.е. по существу нужно найти условные вероятности . Формула Байеса выглядит так:

Пример решения задачи

Условие задачи 1

На фабрике станки 1,2 и 3 производят соответственно 20%, 35% и 45% всех деталей. В их продукции брак составляет соответственно 6%, 4%, 2%. Какова вероятность того, что случайно выбранное изделие оказалось дефектным? Какова вероятность того, что оно было произведено: а) станком 1; б) станком 2; в) станком 3?

Решение задачи 1

Обозначим через событие, состоящее в том, что стандартное изделие оказалось дефектным.

Событие может произойти только при условии наступления одного из трех событий:

Изделие произведено на станке 1;

Изделие произведено на станке 2;

Изделие произведено на станке 3;

Запишем условные вероятности:

Формула полной вероятности

Если событие может произойти только при выполнении одного из событий , которые образуютполную группу несовместных событий, то вероятность события вычисляется по формуле

По формуле полной вероятности находим вероятность события :

Формула Байеса

Формула Байеса позволяет «переставить причину и следствие»: по известному факту события вычислить вероятность того, что оно было вызвано данной причиной.

Вероятность того, что дефектное изделие изготовлено на станке 1:

Вероятность того, что дефектное изделие изготовлено на станке 2:

Вероятность того, что дефектное изделие изготовлено на станке 3:

Условие задачи 2

Группа состоит из 1 отличника, 5 хорошо успевающих студентов и 14 студентов, успевающих посредственно. Отличник отвечает на 5 и 4 с равной вероятностью, хорошист отвечает на 5, 4 и 3 с равной вероятностью, и посредственно успевающий студент отвечает на 4,3 и 2 с равной вероятностью. Случайно выбранный студент ответил на 4. Какова вероятность того, что был вызван посредственно успевающий студент?

Решение задачи 2

Гипотезы и условные вероятности

Возможны следующие гипотезы:

Отвечал отличник;

Отвечал хорошист;

–отвечал посредственно занимающийся студент;

Пусть событие -студент получит 4.

Условные вероятности:

Ответ:


Дано определение геометрической вероятности и подробно рассмотрена широко известная задача о встрече.

Формула полной вероятности.

Следствием обеих основных теорем- теоремы сложения вероятностей и теоремы умножения вероятностей- является так называемая формула полной вероятности.

Пусть требуется определить вероятность некоторого события A которое может произойти с одним из событий
, образующих полную группу несовместимых событий.Будем эти события называть гипотезами.

Докажем что в этом случае

Вероятность события A вычисляется как сумма произведений вероятности каждой гипотезы на условную вероятность события при реализации этой гипотезы.

Эта формула носит название формулы полной вероятности.

Доказательство

Так как гипотезыH1,H2…, Hn,образуетполную группу то событие A может появиться в комбинации с какой либо из этих гиплтез

A=AH1+AH2+…+Ahn.


Т.к.гипотезы Н1, Н2,…,Hn несовместны, то и комбинации Н1А,H2A,…,HnA также несовместны; применяя к нему теорему сложения,получим:

Применяя к событию HiA теорему умножения, получим

Что и требовалось доказать.

Имеется три одинаковых на вид урны: в первой урне два белых и один черный шар; во второй-три белых и один черный шар; в третьей-два белых и два черных шара.

Некто выбирает наугад одну из урн и вынимает из нее шар.Найти вероятность того,что этот шар белый.

Рассмотрим три гипотезы:

Н1-выбор первой урны,

Н2-выбор второй урны,

Н3-выбор третьей урны

И событие А-появление белого шара.

Т.к.гипотезы по условию задачи равновозможны,то


Условные вероятности события А при этих гипотезах соответственно равны

Задача 3.5.

Завод изготовляет изделия, каждое из которых с вероятностью p имеет дефект.

В цехе имеется три контролера; рассматривается только одним контролером, с одинаковой вероятностью первым, вторым или третьим.Вероятность обнаружения дефекта(если оно имеется) для i-го контролера равна Pi (i=1,2,3). Если изделие не было забраковано в цехе, то оно попадает в ОТК завода, где дефект, если он имеется, обнаруживается с вероятностью P0.

Определить вероятность того,что изделие будет забраковано.

А- изделие будет забраковано

В- изделие будет забраковано в цехе

С- изделие будет забраковано в ОТК завода.

Так как события В и С несовместимы и

Р(А)=Р(В)+Р(С)

Находим Р(В).Для того, чтобы изделие было забраковано в цехе, нужно,чтобы оно, во-первых,имело дефект, и во-вторых, чтоб дефект был обнаружен.

Вероятность того,что будет обнаружен дефект в цехе равна


Действительно,

Формулируем гипотезы

Н1-дефект обнаружен 1-ым контролером

Н2-дефект обнаружен 2-ым контролером

Н3-дефект обнаружен 3-им контролером

Отсюда

Аналогично

Теорема гипотез (формула Бейеса)

Следствием теоремы умножения и формулы полной вероятности является так называемая теорема гипотез или формула Бейеса.

Поставим следующую задачу.

Имеется полная группа несовместных гипотез Н1,Н2,…Hn.Вероятность этих гипотез до опыта известны и равны соответственно Р(Н1),Р(Н2),…,P(Hn).Произведен опыт,в результате которого наблюдено появление некоторого события А. Спрашивается,как следует изменить вероятности гипотез в связи с появлением этого события?

Здесь по существу, речь идет о том, чтобы найти условную вероятность Р (Hi/A) для каждой гипотезы.

Из теоремы умножения имеем:

P(AHi)=P(A)*P(Hi/A)=P(Hi)*H(A/Hi),

Или отбрасываем левую часть

P(A)*P(Hi/A)=P(Hi)*P(A/Hi), i=1,2,…,n откуда

Или выражая Р(А) с помощью формулы полной вероятности,имеем

Эта формула и носит название формулы Бейеса или теоремы гипотез

Прибор может собираться из высококачественных деталей и из деталей обычного качества;вообще около 40% приборов собирается из высококачественных деталей. Если прибор собран из высококачественных деталей, его надежность (вероятность безотказной работы) за время tравна 0,05; если из деталей обычного качества- его надежность равна 0,7. Прибор испытывается в течении времени t и работал безотказно.Найти вероятность того,что он собран из высококачественных деталей.

Возможны две гипотезы:

Н1-прибор собран из высококачественных деталей,

Н2-прибор собран из деталей обычного качества.

Вероятность этих гипотез до опыта

Р(Н1)=0,4; P(H2)=0,6.

В результате опыта наблюдено событие А- прибор безотказно

Работал время t. Условные вероятности этого события при

Гипотезах Н1 и Н2 равны:

P(A/H1) = 0,95 ; P(A/H2) = 0,7 .

По формуле Вейсса находим вероятность гипотезы Н1 после


Задачи комбинаторики.

Во многих статистических исследованиях встречаются комбинаторные задачи, своеобразие которых целесообразно показать на примерах:

Сколькими способами можно расставить на полке 10 различных книг?

В турнире принимают участие 8 команд. Сколько различных представлений относительно трех первых мест (по результатам соревнований) можно сделать?

Сколько различных трехбуквенных слов можно составить из 32 букв алфавита, не обращая внимания на то, имеет ли смысл составленные из букв слова или нет?

Сколькими способами можно из множества k (различных) элементов выбрать r элементов?

Как велико число различных результатов бросаний двух игровых костей.

Приведенные примеры показывают, что в задачах комбинаторики интересуется вообще числом различных выборок определенных объектов, причем, в зависимости от вида дополнительных требований, следует различать, какие выборки считаются одинаковыми и какие различными.

В теории вероятности и математической статистике используют в основном три понятия комбинаторики:

Размещения

Перестановки

Сочетания

Размещениями из n элементов по m называются такие их соединения, которые различаются друг от друга самими элементами или их порядком. Например: размещения из 3 элементов a , b , c по 2: ab, ac, bc, ba, ca, cb.Число всех размещений из n различных элементов по m A

Например: размещения из 3 элементов a , b , c по 2: ab,ac ,bc , ba , ca ,cb.Число всех размещений из n различных элементов по m A

Всего m множителей


Перестановками из n элементов называются такие их соединения,отличающиеся друг от друга только порядком входящих в них элементов.Например: перестановка из трех элементов a,b и c: abc, bca, cab , cba, bac, acb. Число всех перестановок из n различных элементов Pn

Pn= 1*2*3* …*n=n!=An

Сколькими способами можно расставить на полке 10 книг.

P10=10!=3628800.

Сочетаниями из n элементов по m называются их соединения, различающиеся друг от друга только самими элементами. Например: сочетания из трех элементов a, b и c по два: ab , ac , bc . Число всех сочетаний из n различных элементов по m обозначается Cn

Мы можем записать

Повторение опытов

При практическом применении теории вероятностей часто приходится встречаться с задачами, в которых один и тот же опыт или аналогичные опыты повторяются неоднократно. В результате каждого опыта может появиться или не появиться некоторое событие А в результате серии опытов.

Такие задачи весьма просто решаются в случае, когда опыты являются независимыми.

Несколько опытов называются независимыми, если вероятность того или иного исхода каждого из опытов не зависит от того, какие исходы имели другие опыты. Несколько последовательных выниманий карты из колоды представляет собой независимые опыты при условии, что вынутая карта каждый раз возвращается в колоду и карты перемешиваются; в противном случае – зависимые опыты.

Независимые опыты могут производиться в одинаковых или различных условиях.

Общая теорема о повторении опытов.

Частная теорема о повторении опытов касается того случая, когда вероятность события А во всех опытах одна и та же. На практике часто приходится встречаться с более сложным случаем, когда опыты производятся в неодинаковых условиях, и вероятность события от опыта к опыту меняется. Способ вычисления вероятности заданного числа появлений событий в таких условиях дает общая теорема о повторении опытов.

Пусть число опытов u=2, тогда полная группа событий:

P1P2+P1q2+q1P2+q1q2

Пусть число опытов u=3, тогда полная группа событий:

P1P2P3+P1P2q3+P1q2P3+q1P2P3+P1q2q3+q1P2q3+q1q2P+q1q2q3

Аналогично для числа опытов n полная группа событий:

P1P2*…*Pn+P1P2*…*qn+…+q1P2*…*Pn+…+q1*q2*…qn,причем в каждое из произведений событие А входит m раз, а событие А входит n-m раз.Число таких сочетаний по прежнему


или короче

где z-произвольный параметр.

Функция jn(z),разложение которой по степеням параметра z дает в качестве коэффициентов вероятности pm,n, называется производящей функцией вероятностей pm,n или просто производящей функцией.

Пользуясь понятием производящий функции, можно сформулировать общую теорему о повторении опытов в следующем виде:

Вероятность того, что событие А в n независимых опытах появится ровно m раз, равна коэффициенту при zm в выражении производящей функции

jn(z)=(qi+piz) где pi-вероятность появления события А в i-ом опыте

Вышеприведенная формулировка общей теоремы о повторении опытов в отличии от частной теоремы не дает явного выражения для вероятности pm,n.

Такое выражение в принципе написать можно, но оно является слишком сложным, и мы не будем его приводить.

Однако не прибегая к такому явному выражению, все же можно записать общую теорему о повторении опытов в виде одной формулы

случайная величина.

Одним из важнейших основных понятий теории вероятности является понятие о случайной величине.

Случайной величиной называется величина, которая в результате опыта может принять то или иное значение, причем неизвестно заранее, какое имено.

Примеры случайных величин:

Число вызовов, поступавших на телефонную станцию за сутки;

Количество мальчиков, родившихся в роддоме за месяц;

Количество девочек, родившихся в роддоме за месяц;

Во всех трех примерах случайные величины могут принимать отдельные изолированные значения, которые можно заранее перечислить.

В примере 1;

Такие случайные величины, принимающие только отдельные, отделенные друг от друга значения называются дискретными величинами.

Существуют случайные величины другого типа.

Например, температура воздуха, влажность воздуха, напряжение в сети электрического тока.

Функция распределения.

Ряд распределения, многоугольник распределения не

являются универсальными характеристиками случайной величины:они существуют только для дискретных случайных величин.Нетрудно убедиться,что для непрерывной случайной величины такой характеристики построить нельзя. Действительно, непрерывная случайная величина имеет бесчисленное множество возможных значений, ???? занимающих некоторый промежуток (так называемое “несчетное множество”). Составить таблицу, в которой были бы перечислены все возможные значения такой случайной величины, невозможно. Следовательно, для непрерывной случайной величины не существует ряда распределения в том смысле, в каком он существует для прерывной величины. Однако различные области возможных значений случайной величины все же не являются одинаково вероятными, и для непрерывной величины существует распределение вероятностей, хотя и не в том смысле, как для прерывной (или дискретной).

Для количественной характеристики этого распределения вероятностей удобно воспользоваться не вероятностью события x=x, а вероятностью события x


Функцию распределения F(x) иногда называют также интегральной функцией распределения или интегральным законом распределения.

Функция распределения-универсальная характеристика случайной величины.Она существует для всех случайных величин: как дискретных, так и непрерывных.Функция распределения

Полностью характеризует случайную величину с вероятной точки зрения,т.е. является одной из форм распределения.

Сформулируем некоторые общие свойства функции распределения:

Функция распределения F(x) есть неубывающая функция своего аргумента т.е. при x2>x1 F(x2)>F(x1).

На минус бесконечности функция распределения равна нулю

3.На плюс бесконечности функция распределения равна 1.

Типичная функция распределения непрерывной случайной величины имеет вид

Вероятность показания случайной величины на заданный участок.

При решении практических задач, связанных со случайными величинами часто оказывается необходимым вычислять вероятность того, что случайная величина примет значение, заключенное в некоторых пределах, например от a до b.

Условимся для определенности левый конец a включать в участок(a,b), а правый-не включать.Тогда попадание случайной величины x на участок(a,b) равносильно выполнено неравенство:

выразим вероятность того события через функцию распределения величины x. Для того рассмотрим три события:

событие А, состоящее в том, что C

событие B, состоящее в том, что C

событие С, состоящее в том, что a

Учитывая, что А=В+С, по теореме сложения вероятностей имеем

R(C

F(b)=F(a)+R(a£C

P(a£C

Т.е. вероятность показания случайной величины на заданный предел равна приращению функции распределения на этом участке.

Плотность распределения.

Пусть имеется непрерывная случайная величина x с функцией распределения F(x),которую мы предложим непрерывной и дифференцируемой.

Вычислим вероятность попадания этой величины на участок от x до x+DC:

R(C£C

т.е.приращению функции на этом участке. Рассмотрим отношение этой вероятности к длине участка, т.е. среднюю вероятность,приходящуюся на единицу длины на этом участке, и будем приближать DC к 0. В приделе получим производную от функции распределения.

Введем обозначение:

Функция f (x)- производная функции распределения - характеризует как бы плотность,с которой распределяются значения случайной величины в данной точке. Эта функция называется плотностью распределения

(иначе”плотностью вероятности”) непрерывной случайной величины X. Иногда функцию f (x) называют “дифференциальной функцией распределения” или “дифференциальным законом распределения “ величины Х.

Кривая, изображающая плотность распределения случайной величины, называется кривой распределения.

Плотность распределения, так же как и функция распределения, есть одна из форм закона распределения.В противоположность от функции распределения эта форма является универсальной: она существует только для непрерывных случайных величин.

Рассмотрим непрерывную величину Х с плотностью распределения f (x) и элементарный участок DX,

примыкающий к точке Х.


Вероятность нахождения случайной величины Х на этот элементарный участок (с точностью до бесконечно малых высшего порядка) равна f (x)dx. Величина f (x)dx называется элементом вероятности. Геометрически это есть площадь элементарного прямоугольника, опирающегося на отрезок dx.

Выразим вероятность попадания величины Х на отрезок от a до b через плотность распределения:

Очевидно, она равна сумме элементов вероятности на всем этом участке, то есть интегралу:

Геометрически вероятность попадания величины Х на участке (a,b) равна площади кривой распределения, опирающийся на этот участок.

выражает плотность распределения через функцию распределения. Зададимся обратрой задачей:выразить функцию распределения через плотность.По определению

F(x)=P(X

Откуда по формуле(3) имеем:


F(x)=

Геометрически F(x) есть не что иное,как площадь кривой распределения,лежащая левее точки:X

Укажем основные свойства плотности распределения:

1.Плотность распределения есть неотрицательная функция

Это свойство непосредственно вытекает из того,что функция распределения F(x) есть неубывающая функция.

2.Интеграл в бесконечных пределах от плотности распределения равен 1

Это следует из того,что F(+¥)=1

Геометрически основные свойства плотности распределения означают:

1.Вся кривая распределения лежит не ниже оси абсцисс.

2.Полная площадь,ограниченная кривой распределения и осью абсцисс, равна 1.

ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН. ИХ РОЛЬ И НАЗНАЧЕНИЯ.

Мы познакомились с рядом полных характеристик случайных величин- так называемых законов распределения.Такими характеристиками были:

Для дискретной случайной величины

а) функция распределения;

б) ряд распределения (графически – кривая распределения).

Каждый закон распределения представляет собой некоторую функцию,и указание этой функции полностью

Описывает случайную величину с вероятностной точки зрения.

Однако во многих вопросах практики нет необходимости характеризовать случайную величину плотностью,исчерпывающим образом.

Зачастую достаточно бывает указать только отдельные числовые параметры, до некоторой степени характеризующие существенные черты распределения

чайной величины: например какое то среднее значение, около группируются возможные значения случайной величины; какое то число, характеризующее степень разбросанности этих значений относительно среднего, и т. д.

Пользуясь такими характеристиками, мы можем все существенные сведения относительно случайной величины, которыми мы располагаем, выразить наиболее компактно с помощью числовых параметров.Вот эти параметры, которые выражают в сжатой числовой форме наиболее существенные особенности распределения, называются числовыми характеристиками случайной величины.

В теории вероятности и математической статистики применяются большое количество различных числовых характеристик, имеющих различное назначение и различные области применения,но все они делятся на два класса:

1.Характеристики положения.

2. Характеристики рассеяния.

Характеристики положения.

Математическое ожидание. Медиана. Мода. Начальный момент.

Среди числовых характеристик случайных величин нужно прежде всего отметить те,которые характеризуют положения случайной величины на числовой оси,т. е. Указывают некоторое среднее, ориентировочное значение, около которого группируются все возможные значения случайной величины.

Из характеристик положения в теории вероятности важнейшую роль играет математическое ожидание случайной величины,которое иногда называют средним значением случайной величины.

Рассмотрим случайную дискретную величину X , имеющую возможные значения X1,X2 ,…Xn c вероятностями P1, P2 ,… Pn.

Нам требуется характеризовать каким то числом положение значений случайной величины на оси абсцисс. Для этой цели естественно воспользоваться так называемым « «средним взвешенным » из значений Xi, причем каждое значение Xi при?????????? должно учитываться с «весом» , пропорциональным вероятности этого значения. Т. о. Мы вычислим среднее значение случайной величины x , которое мы обозначим М[x]



Или учитывая, что

Это среднее взвешенное значение и называется математическим ожиданием случайной величины.

Математическим ожиданием случайной величины называется сумма произведений всех возможных значений с. в. на вероятности этих значений.

Заметим, что в выше приведенной формулировке определение математического ожидания справедлива только для дискретных случайных величин.


Для непрерывной величины x математическое ожидание, естественно выражается уже не суммой, а интегралом:

Где f(x)-плотность распределения случайной величины Х.

F(x)dx-элемент вероятности.

Кроме важнейшей из характеристик положение – математического ожидания, - на практике иногда применяются и другие характеристики положения, в частности мода и медиана

Модой случайной величины называется ее наиболее вероятное значение, строго говоря, применяем только x дискретным величинам

Для непрерывной случайной величины модой является то значение в котором плотность вероятности максимальна

Медианой с. в. X называется такое ее значение Ме, т. е. Одинаково вероятно, окажется ли случайная величина меньше или больше Ме

Геометрически медиана – это абсцисса точки, в которой площадь, ограниченная кривой распределения, делится попалам.

‘ PГрафик функции распределения имеет вид

Задача 5,50

На перекрестке стоит автоматический светофор, в котором

1минуту горит зеленый свет и 0,5 минуты-красный, затем 1 минуту горит зеленый свет,0,5 минут красный и,т,д

некто подъезжает к перекрестку на машине в случайный момент, не связанный с работой

светофора

а) найти вероятность того, что он проедет перекресток не останавливаясь

б)найти среднее время ожидания у перекрестка

Момент проезда автомашины через перекресток распределен равномерно в интервале, равном

Периоду смены цветов в светофоре

Этот период равен 1+0,5=1,5минут

Для того, чтобы машина проехала через перекресток, не останавливаясь, достаточно, чтобы

Момент проезда перекрестка пришелся на интервал времени (0,1)

Для случайной величены, подчиненный закону постоянной плотности в интервале (0,1,5)

Вероятность того,что она попадает на интервал (0,1) равна Время ожидания есть смешанная случайная величина,с вероятностью она равна 0,а с Вероятностью она принимает с одинаковой плотностью вероятности любое значение между 0 и 0,5 минут

Среднее время ожидания у перекрестка

Закон распределения Пуасона

Во многих задачах практики приходится иметь дело со случайными величинами распределенными по своеобразному закону который называется законом пуасона. Рассмотрим

Дискретную величину, которая может принимать только целые неотрицательные значения

0,1,2,..., m,...,

причем последовательность этих значений практически неограничена.

Говорят что случайная величина Х распределена по закону пуасона, если вероятность того, что

Она примет определенные значения m выражается формулой

где a- некоторая положительная величина называемая параметром Пуасона.Ряд распределения случайной величины Х, распределенный по закону Пуасона имеет вид;

Xm ... m ...
Pm

Дисперсия величины Х равна

Вероятность попадания случайной величины, подчиненной нормальному закону на заданный участок.

Во многих задачах, связанных с нормально распределенными случайными величинами, приходится определять вероятность попадания случайной величины Х, подчиненной нормальному закону с параметрами

m, s,на участок от a до b .

Для вычисления этой вероятности воспользуемся общей формулой.

R (a < C< b) = F(b) – F(a) (1)

где F(b) - функция распределения величины Х в точке b

F(a)-функция распределения величины Х в точке a

Найдем функцию распределения F(x) случайной величины, распределенной по нормальному закону с параметрами m, s. Плотность

распределения величины Х равна:

Отсюда находим функцию распределения:

Сделаем в интеграле замену переменной:

И приведем его к виду:

Этот интеграл не выражается через элементарные функции, но для него

составлены таблицы.

Табличная функция распределения (так называемая таблица интеграла вероятностей) обозначается:

Нетрудно видеть, что эта функция представляет собой не что иное, как функцию распределения для нормально распределенной случайной

величины с параметрами m=0; s=1

Функция распределения Ф*(х) называется также нормальной функцией распределения.

Выразим функцию распределения величины Х с параметрами m,s через нормальную функцию распределения:

Теперь найдем вероятность попадания случайной величины Х на участок от a до b .

Согласно формуле (1):

Таким образом, мы выразим вероятность попадания на участок от a до

B случайной величины, распределенной по нормальному закону распределения с любыми параметрами, через стандартную функцию распределения Ф*(х) , соответствующую нормальному закону с параметрами m=0 и s=1. Заметим, что аргументы функции Ф* в последней формуле имеет простой смысл:

Есть расстояние от правого конца участка b до центра рассеяния, выраженное в средних квадратических отклонениях;

Есть такое же расстояние для левого конца участка, причем что расстояние считается положительным, если конец расположен справа от центра рассеяния, и отрицательным, если слева.

Как и всякая функция распределения, функция Ф*(х) обладает свойствами:

3.Ф*(х)- неубывающая функция.

Кроме того, из симметричности нормального распределения с параметрами m=0 и s=1 относительно начала координат следует, что

4.Ф*(-х)=1-Ф*(х).

Рассмотрим следующий пример.

Случайная величина Х, распределенная по нормальному закону, представляет собой ошибку измерения некоторого расстояния.

При измерении допускается систематическая ошибка в сторону завышения на 1,2(м); среднее квадратическое отклонение ошибки измерения равно 0,8(м).

Найти вероятность того, что отклонение измеренного значения от истинного не превзойдет по абсолютной величине 1,6(м).

Ошибка измерения есть случайная величина Х, подчиненная нормальному закону с параметрами m=12 , s=0,8.

Нужно найти вероятность попадания этой величины на участок от

a=--1,б до b= +1,6.

По формуле имеем:

Пользуясь таблицами функции Ф*(0,5)=0,6915 и Ф*(-3,5)=0,0002

Р(-1,6<х<1,6)=0,6915-0,0002=0,6913

Задача 5.48.

Браковка шариков для подшибников производится следующим образом:

если шарик не проходит через отверстие диаметром d2>d1, то его размер считается приемлемым. Если какое- нибудь из этих условий не выполняется, то шарик бракуется. Известно, что диаметр шарика Д есть нормально распределенная случайная величина с характеристиками

Определить вероятность q того, что шарик будет забракован.

q= 1- p(d1< d < d2);

Известно, что размер D шарика для подшипника является случайной величиной, распределенной по нормальному закону. Браковка шарика производится так же, как указанно в предыдущей задаче. При этом известно, что средний размер шарика равен

А брак составляет 10% от всего выпуска.Определить среднее квадратическое отклонение диаметра шарика sd.

Аналогично предыдущей задаче вероятность брака

Откуда

Задача 5-54

Случайная величина х подчинена нормальному закону с математическим мх=0.Вероятность показания этой случайной величины на участках от -1 до 1 равна 0.5.


Найти среднее квадратичное отклонение и написать выражение нормального закона

Откуда четность распределения

Построим график функции четность распределения

x -5 -4 -3 -2 -1
-5,68 -3,64 -2,05 -0,91 -0,22 -0,22 -0,91 -2,05 -3,64 -5,68
0,003 0,026 0,129 0,403 0,803 0,803 0,403 0,129 0,026 0,003
0,001 0,01 0,03 0,11 0,22 0,3 0,22 0,11 0,03 0,01 0,001

Здесь должен быть график

Задача 5-58.

Имеется случайная величина х, подчиненная нормальному закону е математическим ожиданием мх, а средним квадратичным отклонением сигма от х. Требуется приближенно

Заменить нормальный закон законом постоянной плотности в интервале альфа, бета; границы альфа, бета подобрать так, чтобы сохранить неизменными основные характеристики случайной величины х: математическое ожидание и дисперсию.

-2 -1 -5,68 -3,64 -2,05 -0,91 -0,22 -0,22 -0,91 -2,05 -3,64 -5,68 0,0033 0,0262 0,1287 0,4025 0,8025 0,8025 0,4025 0,1287 0,0262 0,033 0,001 0,01 0,03 0,11 0,22 0,270 0,22 0,11 0,03 0,01 0,001

Вариант 2


Случайная величина Х подчинена нормальному закону с математиче-ским ожиданием Мх=6. Вероятность попадания этой случайной величины на участок от 4 до8 равна 0,6. Найти среднее квадратичное отклонение и написать выражение нормального закона. Построить график плотности распределения.

Откуда плотность распределения

Построим график плотности распределения.

х -1
-4,36 -3,04 -2,20 -1,35 -0,76 -0,34 -0,08 -0,08 -0,34 -0,76 -1,35 -2,20 -3,04 -4,36

ПРАВИЛО ТРЕХ s

Пусть нормальная величина Х распределена по нормальному закону с параметрами М и s. Ппокажем что с точностью до 03% случается величина подчиненная закону принимает возможные значения не отклоняющиеся от центра рассеяния на ± 3s.

Мы хотим найти что

Не превысит 0003

Правило 3s в статистике имеет большое значение.

Одно из самых распространенных правил 3s - это отсеивающий экспери-мент. При отсеивающем эксперименте производят отсеивание выбросов.

Основные задачи математической статистики

Подробности Просмотров: 2154

Формула полной вероятности и формулы Байеса

На данном уроке мы рассмотрим важное следствие теорем сложения и умножения вероятностей и научимся решать типовые задачи по теме. Читателям, которые ознакомились со статьёй о зависимых событиях , будет проще, поскольку в ней мы уже по факту начали использовать формулу полной вероятности. Если Вы зашли с поисковика и/или неважно разбирайтесь в теории вероятностей (ссылка на 1-й урок курса) , то сначала рекомендую посетить указанные страницы.

Собственно, продолжаем. Рассмотрим зависимое событие , которое может произойти лишь в результате осуществления одной из несовместных гипотез , которые образуют полную группу . Пусть известны их вероятности и соответствующие условные вероятности . Тогда вероятность наступления события равна:

Эта формула получила название формулы полной вероятности . В учебниках она формулируется теоремой, доказательство которой элементарно: согласно алгебре событий , (произошло событие и или произошло событие и после него наступило событие или произошло событие и после него наступило событие или …. или произошло событие и после него наступило событие ) . Поскольку гипотезы несовместны, а событие - зависимо, то по теореме сложения вероятностей несовместных событий (первый шаг) и теореме умножения вероятностей зависимых событий (второй шаг) :

Наверное, многие предчувствуют содержание первого примера =)

Куда ни плюнь - везде урна:

Задача 1

Имеются три одинаковые урны. В первой урне находятся 4 белых и 7 черных шаров, во второй - только белые и в третьей - только черные шары. Наудачу выбирается одна урна и из неё наугад извлекается шар. Какова вероятность того, что этот шар чёрный?

Решение : рассмотрим событие - из наугад выбранной урны будет извлечён чёрный шар. Данное событие может произойти в результате осуществления одной из следующих гипотез:
- будет выбрана 1-ая урна;
- будет выбрана 2-ая урна;
- будет выбрана 3-я урна.

Так как урна выбирается наугад, то выбор любой из трёх урн равновозможен , следовательно:

Обратите внимание, что перечисленные гипотезы образуют полную группу событий , то есть по условию чёрный шар может появиться только из этих урн, а например, не прилететь с бильярдного стола. Проведём простую промежуточную проверку:
, ОК, едем дальше:

В первой урне 4 белых + 7 черных = 11 шаров, по классическому определению :
- вероятность извлечения чёрного шара при условии , что будет выбрана 1-ая урна.

Во второй урне только белые шары, поэтому в случае её выбора появления чёрного шара становится невозможным : .

И, наконец, в третьей урне одни чёрные шары, а значит, соответствующая условная вероятность извлечения чёрного шара составит (событие достоверно) .



- вероятность того, что из наугад выбранной урны будет извлечен чёрный шар.

Ответ :

Разобранный пример снова наводит на мысль о том, как важно ВНИКАТЬ В УСЛОВИЕ. Возьмём те же задачи с урнами и шарами - при их внешней схожести способы решения могут быть совершенно разными: где-то требуется применить только классическое определение вероятности , где-то события независимы , где-то зависимы , а где-то речь о гипотезах. При этом не существует чёткого формального критерия для выбора пути решения - над ним почти всегда нужно думать. Как повысить свою квалификацию? Решаем, решаем и ещё раз решаем!

Задача 2

В тире имеются 5 различных по точности боя винтовок. Вероятности попада-ния в мишень для данного стрелка соответственно равны и 0,4. Чему равна вероятность попадания в мишень, если стрелок делает один выстрел из слу-чайно выбранной винтовки?

Краткое решение и ответ в конце урока.

В большинстве тематических задач гипотезы, конечно же, не равновероятны:

Задача 3

В пирамиде 5 винтовок, три из которых снабжены оптическим прицелом. Вероятность того, что стрелок поразит мишень при выстреле из винтовки с оптическим прицелом, равна 0,95; для винтовки без оптического прицела эта вероятность равна 0,7. Найти вероятность того, что мишень будет поражена, если стрелок производит один выстрел из наудачу взятой винтовки.

Решение : в этой задаче количество винтовок точно такое же, как и в предыдущей, но вот гипотезы всего две:
- стрелок выберет винтовку с оптическим прицелом;
- стрелок выберет винтовку без оптического прицела.
По классическому определению вероятности : .
Контроль:

Рассмотрим событие: - стрелок поразит мишень из наугад взятой винтовки.
По условию: .

По формуле полной вероятности:

Ответ : 0,85

На практике вполне допустим укороченный способ оформления задачи, который вам тоже хорошо знаком:

Решение : по классическому определению: - вероятности выбора винтовки с оптическим и без оптического прицела соответственно.

По условию, - вероятности попадания в мишень из соответствующих типов винтовок.

По формуле полной вероятности:
- вероятность того, что стрелок поразит мишень из наугад выбранной винтовки.

Ответ : 0,85

Следующая задача для самостоятельного решения:

Задача 4

Двигатель работает в трёх режимах: нормальном, форсированном и на холостом ходу. В режиме холостого хода вероятность его выхода из строя равна 0,05, при нормальном режиме работы - 0,1, а при форсированном - 0,7. 70% времени двигатель работает в нормальном режиме, а 20% - в форсированном. Какова вероятность выхода из строя двигателя во время работы?

На всякий случай напомню - чтобы получить значения вероятностей проценты нужно разделить на 100. Будьте очень внимательны! По моим наблюдениям, условия задач на формулу полной вероятности частенько пытаются подзапутать; и я специально подобрал такой пример. Скажу по секрету - сам чуть не запутался =)

Решение в конце урока (оформлено коротким способом)

Задачи на формулы Байеса

Материал тесно связан с содержанием предыдущего параграфа. Пусть событие наступило в результате осуществления одной из гипотез . Как определить вероятность того, что имела место та или иная гипотеза?

При условии , что событие уже произошло , вероятности гипотез переоцениваются по формулам, которые получили фамилию английского священника Томаса Байеса:


- вероятность того, что имела место гипотеза ;
- вероятность того, что имела место гипотеза ;

- вероятность того, что имела место гипотеза .

На первый взгляд кажется полной нелепицей - зачем пересчитывать вероятности гипотез, если они и так известны? Но на самом деле разница есть:

Это априорные (оцененные до испытания) вероятности.

Это апостериорные (оцененные после испытания) вероятности тех же гипотез, пересчитанные в связи «со вновь открывшимися обстоятельствами » - с учётом того факта, что событие достоверно произошло .

Рассмотрим это различие на конкретном примере:

Задача 5

На склад поступило 2 партии изделий: первая - 4000 штук, вторая - 6000 штук. Средний процент нестандартных изделий в первой партии составляет 20%, а во второй - 10%. Наудачу взятое со склада изделие оказалось стандартным. Найти вероятность того, что оно: а) из первой партии, б) из второй партии.

Первая часть решения состоит в использовании формулы полной вероятности. Иными словами, вычисления проводятся в предположении, что испытание ещё не произведено и событие «изделие оказалось стандартным» пока не наступило.

Рассмотрим две гипотезы:
- наудачу взятое изделие будет из 1-й партии;
- наудачу взятое изделие будет из 2-й партии.

Всего: 4000 + 6000 = 10000 изделий на складе. По классическому определению :
.

Контроль:

Рассмотрим зависимое событие: - наудачу взятое со склада изделие будет стандартным.

В первой партии 100% - 20% = 80% стандартных изделий, поэтому: при условии , что оно принадлежит 1-й партии.

Аналогично, во второй партии 100% - 10% = 90% стандартных изделий и - вероятность того, что наудачу взятое на складе изделие будет стандартным при условии , что оно принадлежит 2-й партии.

По формуле полной вероятности:
- вероятность того, что наудачу взятое на складе изделие будет стандартным.

Часть вторая. Пусть наудачу взятое со склада изделие оказалось стандартным. Эта фраза прямо прописана в условии, и она констатирует тот факт, что событие произошло .

По формулам Байеса:

а) - вероятность того, что выбранное стандартное изделие принадлежит 1-ой партии;

б) - вероятность того, что выбранное стандартное изделие принадлежит 2-ой партии.

После переоценки гипотезы , разумеется, по-прежнему образуют полную группу :
(проверка;-))

Ответ :

Понять смысл переоценки гипотез нам поможет Иван Васильевич, которой снова сменил профессию и стал директором завода. Он знает, что сегодня 1-й цех отгрузил на склад 4000, а 2-й цех - 6000 изделий, и приходит удостовериться в этом. Предположим, вся продукция однотипна и находится в одном контейнере. Естественно, Иван Васильевич предварительно подсчитал, что изделие, которое он сейчас извлечёт для проверки, с вероятностью будет выпущено 1-м цехом и с вероятностью - вторым. Но после того как выбранное изделие оказывается стандартным, он восклицает: «Какой же классный болт! - его скорее выпустил 2-й цех». Таким образом, вероятность второй гипотезы переоценивается в лучшую сторону , а вероятность первой гипотезы занижается: . И эта переоценка небезосновательна - ведь 2-й цех произвёл не только больше изделий, но и работает в 2 раза лучше!

Вы скажете, чистый субъективизм? Отчасти - да, более того, сам Байес интерпретировалапостериорные вероятности как уровень доверия . Однако не всё так просто - в байесовском подходе есть и объективное зерно. Ведь вероятности того, что изделие будет стандартным (0,8 и 0,9 для 1-го и 2-го цехов соответственно) это предварительные (априорные) и средние оценки. Но, выражаясь философски - всё течёт, всё меняется, и вероятности в том числе. Вполне возможно, что на момент исследования более успешный 2-й цех повысил процент выпуска стандартных изделий (и/или 1-й цех снизил) , и если проверить бОльшее количество либо все 10 тысяч изделий на складе, то переоцененные значения окажутся гораздо ближе к истине.

Кстати, если Иван Васильевич извлечёт нестандартную деталь, то наоборот - он будет больше «подозревать» 1-й цех и меньше - второй. Предлагаю убедиться в этом самостоятельно:

Задача 6

На склад поступило 2 партии изделий: первая - 4000 штук, вторая - 6000 штук. Средний процент нестандартных изделий в первой партии 20%, во второй - 10%. Наудачу взятое со склада изделие оказалось не стандартным. Найти вероятность того, что оно: а) из первой партии, б) из второй партии.

Условие отличатся двумя буквами, которые я выделил жирным шрифтом. Задачу можно решить с «чистого листа», или воспользоваться результатами предыдущих вычислений. В образце я провёл полное решение, но чтобы не возникло формальной накладки с Задачей №5, событие «наудачу взятое со склада изделие будет нестандартным» обозначено через .

Байесовская схема переоценки вероятностей встречается повсеместно, причём её активно эксплуатируют и различного рода мошенники. Рассмотрим ставшее нарицательным АО на три буквы, которое привлекает вклады населения, якобы куда-то их инвестирует, исправно выплачивает дивиденды и т.д. Что происходит? Проходит день за днём, месяц за месяцем и всё новые и новые факты, донесённые путём рекламы и «сарафанным радио», только повышают уровень доверия к финансовой пирамиде (апостериорная байесовская переоценка в связи с произошедшими событиями!) . То есть, в глазах вкладчиков происходит постоянное увеличение вероятности того, что «это серьёзная контора» ; при этом вероятность противоположной гипотезы («это очередные кидалы») , само собой, уменьшается и уменьшается. Дальнейшее, думаю, понятно. Примечательно, что заработанная репутация даёт организаторам время успешно скрыться от Ивана Васильевича, который остался не только без партии болтов, но и без штанов.

К не менее любопытным примерам мы вернёмся чуть позже, а пока на очереди, пожалуй, самый распространенный случай с тремя гипотезами:

Задача 7

Электролампы изготавливаются на трех заводах. 1-ый завод производит 30% общего количества ламп, 2-й - 55%, а 3-й - остальную часть. Продукция 1-го завода содержит 1% бракованных ламп, 2-го - 1,5%, 3-го - 2%. В магазин поступает продукция всех трех заводов. Купленная лампа оказалась с браком. Какова вероятность того, что она произведена 2-м заводом?

Заметьте, что в задачах на формулы Байеса в условии обязательно фигурирует некоепроизошедшее событие, в данном случае - покупка лампы.

Событий прибавилось, и решение удобнее оформить в «быстром» стиле.

Алгоритм точно такой же: на первом шаге находим вероятность того, что купленная лампа вообще окажется бракованной.

Пользуясь исходными данными, переводим проценты в вероятности:
- вероятности того, что лампа произведена 1-м, 2-м и 3-м заводами соответственно.
Контроль:

Аналогично: - вероятности изготовления бракованной лампы для соответствующих заводов.

По формуле полной вероятности:

- вероятность того, что купленная лампа окажется с браком.

Шаг второй. Пусть купленная лампа оказалась бракованной (событие произошло)

По формуле Байеса:
- вероятность того, что купленная бракованная лампа изготовлена вторым заводом

Ответ :

Почему изначальная вероятность 2-й гипотезы после переоценки увеличилась ? Ведь второй завод производит средние по качеству лампы (первый - лучше, третий - хуже). Так почему же возросла апостериорная вероятность, что бракованная лампа именно со 2-го завода? Это объясняется уже не «репутацией», а размером. Так как завод №2 выпустил самое большое количество ламп (более половины), то логичен, по меньшей мере, субъективный характер завышенной оценки («скорее всего, эта бракованная лампа именно оттуда») .

Интересно заметить, что вероятности 1-й и 3-й гипотез, переоценились в ожидаемых направлениях и сравнялись:

Контроль: , что и требовалось проверить.

К слову, о заниженных и завышенных оценках:

Задача 8

В студенческой группе 3 человека имеют высокий уровень подготовки, 19 человек - средний и 3 - низкий. Вероятности успешной сдачи экзамена для данных студентов соответственно равны: 0,95; 0,7 и 0,4. Известно, что некоторый студент сдал экзамен. Какова вероятность того, что:

а) он был подготовлен очень хорошо;
б) был подготовлен средне;
в) был подготовлен плохо.

Проведите вычисления и проанализируйте результаты переоценки гипотез.

Задача приближена к реальности и особенно правдоподобна для группы студентов-заочников, где преподаватель практически не знает способностей того или иного студента. При этом результат может послужить причиной довольно-таки неожиданных последствий(особенно это касается экзаменов в 1-м семестре) . Если плохо подготовленному студенту посчастливилось с билетом, то преподаватель с большой вероятностью сочтёт его хорошо успевающим или даже сильным студентом, что принесёт неплохие дивиденды в будущем (естественно, нужно «поднимать планку» и поддерживать свой имидж) . Если же студент 7 дней и 7 ночей учил, зубрил, повторял, но ему просто не повезло, то дальнейшие события могут развиваться в самом скверном ключе - с многочисленными пересдачами и балансировкой на грани вылета.

Что и говорить, репутация - это важнейший капитал, не случайно многие корпорации носят имена-фамилии своих отцов-основателей, которые руководили делом 100-200 лет назад и прославились своей безупречной репутацией.

Да, байесовский подход в известной степени субъективен, но… так устроена жизнь!

Закрепим материал заключительным индустриальным примером, в котором я расскажу о до сих пор не встречавшихся технических тонкостях решения:

Задача 9

Три цеха завода производят однотипные детали, которые поступают на сборку в общий контейнер. Известно, что первый цех производит в 2 раза больше деталей, чем второй цех, и в 4 раза больше третьего цеха. В первом цехе брак составляет 12%, во втором - 8%, в третьем - 4%. Для контроля из контейнера берется одна деталь. Какова вероятность того, что она окажется бракованной? Какова вероятность того, что извлечённую бракованную деталь выпустил 3-й цех?

Таки Иван Васильевич снова на коне =) Должен же быть у фильма счастливый конец =)

Решение : в отличие от Задач №№5-8 здесь в явном виде задан вопрос, который разрешается с помощью формулы полной вероятности. Но с другой стороны, условие немного «зашифровано», и разгадать этот ребус нам поможет школьный навык составлять простейшие уравнения. За «икс» удобно принять наименьшее значение:

Пусть - доля деталей, выпускаемая третьим цехом.

По условию, первый цех производит в 4 раза больше третьего цеха, поэтому доля 1-го цеха составляет .

Кроме того, первый цех производит изделий в 2 раза больше, чем второй цех, а значит, доля последнего: .

Составим и решим уравнение:

Таким образом: - вероятности того, что извлечённая из контейнера деталь выпущена 1-м, 2-м и 3-м цехами соответственно.

Контроль: . Кроме того, будет не лишним ещё раз посмотреть на фразу«Известно, что первый цех производит изделий в 2 раза больше второго цеха и в 4 раза больше третьего цеха» и убедиться, что полученные значения вероятностей действительно соответствуют этому условию.

За «икс» изначально можно было принять долю 1-го либо долю 2-го цеха - вероятности выйдёт такими же. Но, так или иначе, самый трудный участок пройден, и решение входит в накатанную колею:

Из условия находим:
- вероятности изготовления бракованной детали для соответствующих цехов.

По формуле полной вероятности:
- вероятность того, что наугад извлеченная из контейнера деталь окажется нестандартной.

Вопрос второй: какова вероятность того, что извлечённую бракованную деталь выпустил 3-й цех? Данный вопрос предполагает, что деталь уже извлечена, и она оказалось бракованной. Переоцениваем гипотезу по формуле Байеса:
- искомая вероятность. Совершенно ожидаемо - ведь третий цех производит не только самую малую долю деталей, но и лидирует по качеству!

Пусть известны их вероятности и соответствующие условные вероятности . Тогда вероятность наступления события равна:

Эта формула получила название формулы полной вероятности . В учебниках она формулируется теоремой, доказательство которой элементарно: согласно алгебре событий , (произошло событие и или произошло событие и после него наступило событие или произошло событие и после него наступило событие или …. или произошло событие и после него наступило событие ) . Поскольку гипотезы несовместны, а событие – зависимо, то по теореме сложения вероятностей несовместных событий (первый шаг) и теореме умножения вероятностей зависимых событий (второй шаг) :

Наверное, многие предчувствуют содержание первого примера =)

Куда ни плюнь – везде урна:

Задача 1

Имеются три одинаковые урны. В первой урне находятся 4 белых и 7 черных шаров, во второй – только белые и в третьей – только черные шары. Наудачу выбирается одна урна и из неё наугад извлекается шар. Какова вероятность того, что этот шар чёрный?

Решение : рассмотрим событие – из наугад выбранной урны будет извлечён чёрный шар. Данное событие может произойти в результате осуществления одной из следующих гипотез:
– будет выбрана 1-я урна;
– будет выбрана 2-я урна;
– будет выбрана 3-я урна.

Так как урна выбирается наугад, то выбор любой из трёх урн равновозможен , следовательно:

Обратите внимание, что перечисленные гипотезы образуют полную группу событий , то есть по условию чёрный шар может появиться только из этих урн, а например, не прилететь с бильярдного стола. Проведём простую промежуточную проверку:
, ОК, едем дальше:

В первой урне 4 белых + 7 черных = 11 шаров, по классическому определению :
– вероятность извлечения чёрного шара при условии , что будет выбрана 1-я урна.

Во второй урне только белые шары, поэтому в случае её выбора появления чёрного шара становится невозможным : .

И, наконец, в третьей урне одни чёрные шары, а значит, соответствующая условная вероятность извлечения чёрного шара составит (событие достоверно) .



– вероятность того, что из наугад выбранной урны будет извлечен чёрный шар.

Ответ :

Разобранный пример снова наводит на мысль о том, как важно ВНИКАТЬ В УСЛОВИЕ. Возьмём те же задачи с урнами и шарами – при их внешней схожести способы решения могут быть совершенно разными: где-то требуется применить только классическое определение вероятности , где-то события независимы , где-то зависимы , а где-то речь о гипотезах. При этом не существует чёткого формального критерия для выбора пути решения – над ним почти всегда нужно думать. Как повысить свою квалификацию? Решаем, решаем и ещё раз решаем!

Задача 2

В тире имеются 5 различных по точности боя винтовок. Вероятности попада­ния в мишень для данного стрелка соответственно равны 0,5; 0,55; 0,7; 0,75 и 0,4. Чему равна вероятность попадания в мишень, если стрелок делает один выстрел из слу­чайно выбранной винтовки?

Краткое решение и ответ в конце урока.

В большинстве тематических задач гипотезы, конечно же, не равновероятны:

Задача 3

В пирамиде 5 винтовок, три из которых снабжены оптическим прицелом. Вероятность того, что стрелок поразит мишень при выстреле из винтовки с оптическим прицелом, равна 0,95; для винтовки без оптического прицела эта вероятность равна 0,7. Найти вероятность того, что мишень будет поражена, если стрелок производит один выстрел из наудачу взятой винтовки.

Решение : в этой задаче количество винтовок точно такое же, как и в предыдущей, но вот гипотезы всего две:
– стрелок выберет винтовку с оптическим прицелом;
– стрелок выберет винтовку без оптического прицела.
По классическому определению вероятности : .
Контроль:

Рассмотрим событие: – стрелок поразит мишень из наугад взятой винтовки.
По условию: .

По формуле полной вероятности:

Ответ : 0,85

На практике вполне допустим укороченный способ оформления задачи, который вам тоже хорошо знаком:

Решение : по классическому определению: – вероятности выбора винтовки с оптическим и без оптического прицела соответственно.

По условию, – вероятности попадания в мишень из соответствующих типов винтовок.

По формуле полной вероятности:
– вероятность того, что стрелок поразит мишень из наугад выбранной винтовки.

Ответ : 0,85

Следующая задача для самостоятельного решения:

Задача 4

Двигатель работает в трёх режимах: нормальном, форсированном и на холостом ходу. В режиме холостого хода вероятность его выхода из строя равна 0,05, при нормальном режиме работы – 0,1, а при форсированном – 0,7. 70% времени двигатель работает в нормальном режиме, а 20% – в форсированном. Какова вероятность выхода из строя двигателя во время работы?

На всякий случай напомню – чтобы получить значения вероятностей проценты нужно разделить на 100. Будьте очень внимательны! По моим наблюдениям, условия задач на формулу полной вероятности частенько пытаются подзапутать; и я специально подобрал такой пример. Скажу по секрету – сам чуть не запутался =)

Решение в конце урока (оформлено коротким способом)

Задачи на формулы Байеса

Материал тесно связан с содержанием предыдущего параграфа. Пусть событие наступило в результате осуществления одной из гипотез . Как определить вероятность того, что имела место та или иная гипотеза?

При условии , что событие уже произошло , вероятности гипотез переоцениваются по формулам, которые получили фамилию английского священника Томаса Байеса:


– вероятность того, что имела место гипотеза ;
– вероятность того, что имела место гипотеза ;

– вероятность того, что имела место гипотеза .

На первый взгляд кажется полной нелепицей – зачем пересчитывать вероятности гипотез, если они и так известны? Но на самом деле разница есть:

– это априорные (оцененные до испытания) вероятности.

– это апостериорные (оцененные после испытания) вероятности тех же гипотез, пересчитанные в связи «со вновь открывшимися обстоятельствами » – с учётом того факта, что событие достоверно произошло .

Рассмотрим это различие на конкретном примере:

Задача 5

На склад поступило 2 партии изделий: первая – 4000 штук, вторая – 6000 штук. Средний процент нестандартных изделий в первой партии составляет 20%, а во второй – 10%. Наудачу взятое со склада изделие оказалось стандартным. Найти вероятность того, что оно: а) из первой партии, б) из второй партии.

Первая часть решения состоит в использовании формулы полной вероятности. Иными словами, вычисления проводятся в предположении, что испытание ещё не произведено и событие «изделие оказалось стандартным» пока не наступило.

Рассмотрим две гипотезы:
– наудачу взятое изделие будет из 1-й партии;
– наудачу взятое изделие будет из 2-й партии.

Всего: 4000 + 6000 = 10000 изделий на складе. По классическому определению :
.

Контроль:

Рассмотрим зависимое событие: – наудачу взятое со склада изделие будет стандартным.

В первой партии 100% – 20% = 80% стандартных изделий, поэтому: при условии , что оно принадлежит 1-й партии.

Аналогично, во второй партии 100% – 10% = 90% стандартных изделий и – вероятность того, что наудачу взятое на складе изделие будет стандартным при условии , что оно принадлежит 2-й партии.

По формуле полной вероятности:
– вероятность того, что наудачу взятое на складе изделие будет стандартным.

Часть вторая. Пусть наудачу взятое со склада изделие оказалось стандартным. Эта фраза прямо прописана в условии, и она констатирует тот факт, что событие произошло .

По формулам Байеса:

а) – вероятность того, что выбранное стандартное изделие принадлежит 1-й партии;

б) – вероятность того, что выбранное стандартное изделие принадлежит 2-й партии.

После переоценки гипотезы , разумеется, по-прежнему образуют полную группу :
(проверка;-))

Ответ :

Понять смысл переоценки гипотез нам поможет Иван Васильевич, которой снова сменил профессию и стал директором завода. Он знает, что сегодня 1-й цех отгрузил на склад 4000, а 2-й цех – 6000 изделий, и приходит удостовериться в этом. Предположим, вся продукция однотипна и находится в одном контейнере. Естественно, Иван Васильевич предварительно подсчитал, что изделие, которое он сейчас извлечёт для проверки, с вероятностью будет выпущено 1-м цехом и с вероятностью – вторым. Но после того как выбранное изделие оказывается стандартным, он восклицает: «Какой же классный болт! – его скорее выпустил 2-й цех». Таким образом, вероятность второй гипотезы переоценивается в лучшую сторону , а вероятность первой гипотезы занижается: . И эта переоценка небезосновательна – ведь 2-й цех произвёл не только больше изделий, но и работает в 2 раза лучше!

Вы скажете, чистый субъективизм? Отчасти – да, более того, сам Байес интерпретировал апостериорные вероятности как уровень доверия . Однако не всё так просто – в байесовском подходе есть и объективное зерно. Ведь вероятности того, что изделие будет стандартным (0,8 и 0,9 для 1-го и 2-го цехов соответственно) это предварительные (априорные) и средние оценки. Но, выражаясь философски – всё течёт, всё меняется, и вероятности в том числе. Вполне возможно, что на момент исследования более успешный 2-й цех повысил процент выпуска стандартных изделий (и/или 1-й цех снизил) , и если проверить бОльшее количество либо все 10 тысяч изделий на складе, то переоцененные значения окажутся гораздо ближе к истине.

Кстати, если Иван Васильевич извлечёт нестандартную деталь, то наоборот – он будет больше «подозревать» 1-й цех и меньше – второй. Предлагаю убедиться в этом самостоятельно:

Задача 6

На склад поступило 2 партии изделий: первая – 4000 штук, вторая – 6000 штук. Средний процент нестандартных изделий в первой партии 20%, во второй – 10%. Наудачу взятое со склада изделие оказалось не стандартным. Найти вероятность того, что оно: а) из первой партии, б) из второй партии.

Условие отличатся двумя буквами, которые я выделил жирным шрифтом. Задачу можно решить с «чистого листа», или воспользоваться результатами предыдущих вычислений. В образце я провёл полное решение, но чтобы не возникло формальной накладки с Задачей №5, событие «наудачу взятое со склада изделие будет нестандартным» обозначено через .

Байесовская схема переоценки вероятностей встречается повсеместно, причём её активно эксплуатируют и различного рода мошенники. Рассмотрим ставшее нарицательным АО на три буквы, которое привлекает вклады населения, якобы куда-то их инвестирует, исправно выплачивает дивиденды и т.д. Что происходит? Проходит день за днём, месяц за месяцем и всё новые и новые факты, донесённые путём рекламы и «сарафанным радио», только повышают уровень доверия к финансовой пирамиде (апостериорная байесовская переоценка в связи с произошедшими событиями!) . То есть, в глазах вкладчиков происходит постоянное увеличение вероятности того, что «это серьёзная контора» ; при этом вероятность противоположной гипотезы («это очередные кидалы») , само собой, уменьшается и уменьшается. Дальнейшее, думаю, понятно. Примечательно, что заработанная репутация даёт организаторам время успешно скрыться от Ивана Васильевича, который остался не только без партии болтов, но и без штанов.

К не менее любопытным примерам мы вернёмся чуть позже, а пока на очереди, пожалуй, самый распространенный случай с тремя гипотезами:

Задача 7

Электролампы изготавливаются на трех заводах. 1-й завод производит 30% общего количества ламп, 2-й – 55%, а 3-й – остальную часть. Продукция 1-го завода содержит 1% бракованных ламп, 2-го – 1,5%, 3-го – 2%. В магазин поступает продукция всех трех заводов. Купленная лампа оказалась с браком. Какова вероятность того, что она произведена 2-м заводом?

Заметьте, что в задачах на формулы Байеса в условии обязательно фигурирует некое произошедшее событие, в данном случае – покупка лампы.

Событий прибавилось, и решение удобнее оформить в «быстром» стиле.

Алгоритм точно такой же: на первом шаге находим вероятность того, что купленная лампа вообще окажется бракованной.

Пользуясь исходными данными, переводим проценты в вероятности:
– вероятности того, что лампа произведена 1-м, 2-м и 3-м заводами соответственно.
Контроль:

Аналогично: – вероятности изготовления бракованной лампы для соответствующих заводов.

По формуле полной вероятности:

– вероятность того, что купленная лампа окажется с браком.

Шаг второй. Пусть купленная лампа оказалась бракованной (событие произошло)

По формуле Байеса:
– вероятность того, что купленная бракованная лампа изготовлена вторым заводом

Ответ :

Почему изначальная вероятность 2-й гипотезы после переоценки увеличилась ? Ведь второй завод производит средние по качеству лампы (первый – лучше, третий – хуже). Так почему же возросла апостериорная вероятность, что бракованная лампа именно со 2-го завода? Это объясняется уже не «репутацией», а размером. Так как завод №2 выпустил самое большое количество ламп, то на него (по меньшей мере, субъективно) и пеняют: «скорее всего, эта бракованная лампа именно оттуда» .

Интересно заметить, что вероятности 1-й и 3-й гипотез, переоценились в ожидаемых направлениях и сравнялись:

Контроль: , что и требовалось проверить.

К слову, о заниженных и завышенных оценках:

Задача 8

В студенческой группе 3 человека имеют высокий уровень подготовки, 19 человек – средний и 3 – низкий. Вероятности успешной сдачи экзамена для данных студентов соответственно равны: 0,95; 0,7 и 0,4. Известно, что некоторый студент сдал экзамен. Какова вероятность того, что:

а) он был подготовлен очень хорошо;
б) был подготовлен средне;
в) был подготовлен плохо.

Проведите вычисления и проанализируйте результаты переоценки гипотез.

Задача приближена к реальности и особенно правдоподобна для группы студентов-заочников, где преподаватель практически не знает способностей того или иного студента. При этом результат может послужить причиной довольно-таки неожиданных последствий (особенно это касается экзаменов в 1-м семестре) . Если плохо подготовленному студенту посчастливилось с билетом, то преподаватель с большой вероятностью сочтёт его хорошо успевающим или даже сильным студентом, что принесёт неплохие дивиденды в будущем (естественно, нужно «поднимать планку» и поддерживать свой имидж) . Если же студент 7 дней и 7 ночей учил, зубрил, повторял, но ему просто не повезло, то дальнейшие события могут развиваться в самом скверном ключе – с многочисленными пересдачами и балансировкой на грани вылета.

Что и говорить, репутация – это важнейший капитал, не случайно многие корпорации носят имена-фамилии своих отцов-основателей, которые руководили делом 100-200 лет назад и прославились своей безупречной репутацией.

Да, байесовский подход в известной степени субъективен, но… так устроена жизнь!

Закрепим материал заключительным индустриальным примером, в котором я расскажу о до сих пор не встречавшихся технических тонкостях решения:

Задача 9

Три цеха завода производят однотипные детали, которые поступают на сборку в общий контейнер. Известно, что первый цех производит в 2 раза больше деталей, чем второй цех, и в 4 раза больше третьего цеха. В первом цехе брак составляет 12%, во втором – 8%, в третьем – 4%. Для контроля из контейнера берется одна деталь. Какова вероятность того, что она окажется бракованной? Какова вероятность того, что извлечённую бракованную деталь выпустил 3-й цех?

Таки Иван Васильевич снова на коне =) Должен же быть у фильма счастливый конец =)

Решение : в отличие от Задач №№5-8 здесь в явном виде задан вопрос, который разрешается с помощью формулы полной вероятности. Но с другой стороны, условие немного «зашифровано», и разгадать этот ребус нам поможет школьный навык составлять простейшие уравнения. За «икс» удобно принять наименьшее значение:

Пусть – доля деталей, выпускаемая третьим цехом.

По условию, первый цех производит в 4 раза больше третьего цеха, поэтому доля 1-го цеха составляет .

Кроме того, первый цех производит изделий в 2 раза больше, чем второй цех, а значит, доля последнего: .

Составим и решим уравнение:

Таким образом: – вероятности того, что извлечённая из контейнера деталь выпущена 1-м, 2-м и 3-м цехами соответственно.

Контроль: . Кроме того, будет не лишним ещё раз посмотреть на фразу «Известно, что первый цех производит изделий в 2 раза больше второго цеха и в 4 раза больше третьего цеха» и убедиться, что полученные значения вероятностей действительно соответствуют этому условию.

За «икс» изначально можно было принять долю 1-го либо долю 2-го цеха – вероятности выйдут такими же. Но, так или иначе, самый трудный участок пройден, и решение входит в накатанную колею:

Из условия находим:
– вероятности изготовления бракованной детали для соответствующих цехов.

По формуле полной вероятности:
– вероятность того, что наугад извлеченная из контейнера деталь окажется нестандартной.

Вопрос второй: какова вероятность того, что извлечённую бракованную деталь выпустил 3-й цех? Данный вопрос предполагает, что деталь уже извлечена, и она оказалось бракованной. Переоцениваем гипотезу по формуле Байеса:
– искомая вероятность. Совершенно ожидаемо – ведь третий цех производит не только самую малую долю деталей, но и лидирует по качеству!

В данном случае пришлось упрощать четырёхэтажную дробь , что в задачах на формулы Байеса приходится делать довольно часто. Но для данного урока я как-то так случайно подобрал примеры, в которых многие вычисления можно провести без обыкновенных дробей.

Коль скоро в условии нет пунктов «а» и «бэ», то ответ лучше снабдить текстовыми комментариями:

Ответ : – вероятность того, что извлечённая из контейнера деталь окажется бракованной; – вероятность того, что извлечённую бракованную деталь выпустил 3-й цех.

Как видите, задачи на формулу полной вероятности и формулы Байеса достаточно простЫ, и, наверное, по этой причине в них так часто пытаются затруднить условие, о чём я уже упоминал в начале статьи.

Дополнительные примеры есть в файле с готовыми решениями на Ф.П.В. и формулы Байеса , кроме того, наверное, найдутся желающие более глубоко ознакомиться с данной темой в других источниках. А тема действительно очень интересная – чего только стОит один парадокс Байеса , который обосновывает тот житейский совет, что если у человека диагностирована редкая болезнь, то ему имеет смысл провести повторное и даже два повторных независимых обследования. Казалось бы, это делают исключительно от отчаяния… – а вот и нет! Но не будем о грустном.


– вероятность того, что произвольно выбранный студент сдаст экзамен.
Пусть студент сдал экзамен. По формулам Байеса:
а) – вероятность того, что студент, сдавший экзамен, был подготовлен очень хорошо. Объективная исходная вероятность оказывается завышенной, поскольку почти всегда некоторым «середнячкам» везёт с вопросами и они отвечают очень сильно, что вызывает ошибочное впечатление безупречной подготовки.
б) – вероятность того, что студент, сдавший экзамен, был подготовлен средне. Исходная вероятность оказывается чуть завышенной, т.к. студентов со средним уровнем подготовки обычно большинство, кроме того, сюда преподаватель отнесёт неудачно ответивших «отличников», а изредка и плохо успевающего студента, которому крупно повезло с билетом.
в) – вероятность того, что студент, сдавший экзамен, был подготовлен плохо. Исходная вероятность переоценилась в худшую сторону. Неудивительно.
Проверка:
Ответ :

Цель работы: сформировать навыки решения задач по теории вероятностей с помощью формулы полной вероятности и формулы Байеса.

Формула полной вероятности

Вероятность события А , которое может наступить лишь при условии появления одного из несовместных событий В х,В 2 ,...,В п, образующих полную группу, равна сумме произведений вероятностей каждого из этих событий на соответствующую условную вероятность события А:

Эту формулу называют формулой полной вероятности.

Вероятность гипотез. Формула Байеса

Пусть событие А может наступить при условии появления одного из несовместных событий В ь В 2 ,...,В п, образующих полную группу. Поскольку заранее неизвестно, какое из этих событий наступит, их называют гипотезами. Вероятность появления события А определяется по формуле полной вероятности:

Допустим, что произведено испытание, в результате которого появилось событие А . Требуется определить, как изменились (в связи с тем, что событие А уже наступило) вероятности гипотез. Условные вероятности гипотез находят по формуле

В этой формуле индекс / = 1,2

Эту формулу называют формулой Байеса (по имени английского математика, который её вывел; опубликована в 1764 г.). Формула Байеса позволяет переоценить вероятности гипотез после того, как становится известным результат испытания, в итоге которого появилось событие А .

Задача 1. Завод изготавливает определённого типа детали, каждая деталь имеет дефект с вероятностью 0,05. Деталь осматривается одним контролёром; он обнаруживает дефект с вероятностью 0,97, а если дефект не обнаружен, пропускает деталь в готовую продукцию. Кроме того, контролер может по ошибке забраковать деталь, не имеющую дефекта; вероятность этого равна 0,01. Найти вероятности следующих событий: А - деталь будет забракована; В - деталь будет забракована, но ошибочно; С - деталь будет пропущена в готовую продукцию с дефектом.

Решение

Обозначим гипотезы:

Н = (на контроль поступит стандартная деталь);

Н =(на контроль поступит нестандартная деталь).

Событие А = (деталь будет забракована).

Из условия задачи находим вероятности

Р Н (А) = 0,01; Pfi(A) = 0,97.

По формуле полной вероятности получаем

Вероятность того, что деталь будет забракована ошибочно, равна

Найдём вероятность того, что деталь будет пропущена в готовую продукцию с дефектом:

Ответ:

Задача 2. Изделие проверяется на стандартность одним из трёх товароведов. Вероятность того, что изделие попадёт к первому товароведу, равна 0,25, ко второму - 0,26 и к третьему - 0,49. Вероятность того, что изделие будет признано стандартным первым товароведом, равна 0,95, вторым - 0,98, третьим - 0,97. Найти вероятность того, что стандартное изделие проверено вторым контролёром.

Решение

Обозначим события:

Л. = (изделие для проверки попадёт к /-му товароведу); / = 1, 2, 3;

В = (изделие будет признано стандартным).

По условию задачи известны вероятности:

Также известны условные вероятности

По формуле Байеса находим вероятность того, что стандартное изделие проверено вторым контролёром:

Ответ: «0,263.

Задача 3. Два автомата производят детали, которые поступают на общий конвейер. Вероятность получения нестандартной детали на первом автомате равна 0,06, а на втором - 0,09. Производительность второго автомата вдвое больше, чем первого. С конвейера взята нестандартная деталь. Найти вероятность того, что эта деталь произведена вторым автоматом.

Решение

Обозначим события:

А. = (взятая с конвейера деталь произведена /-м автоматом); / = 1,2;

В = (взятая деталь окажется нестандартной).

Также известны условные вероятности

По формуле полной вероятности находим

По формуле Байеса находим вероятность того, что взятая нестандартная деталь произведена вторым автоматом:

Ответ: 0,75.

Задача 4. Испытывается прибор, состоящий из двух узлов, надёжность которых равна 0,8 и 0,9 соответственно. Узлы отказывают независимо друг от друга. Прибор отказал. Найти с учётом этого вероятности гипотез:

  • а) неисправен только первый узел;
  • б) неисправен только второй узел;
  • в) неисправны оба узла.

Решение

Обозначим события:

Д = (7-й узел не выйдет из строя); i = 1,2;

Д - соответствующие противоположные события;

А = (при испытании будет отказ прибора).

Из условия задачи получаем: Р(Д) = 0,8; Р(Л 2) = 0,9.

По свойству вероятностей противоположных событий

Событие А равно сумме произведений независимых событий

Используя теорему сложения вероятностей несовместных событий и теорему умножения вероятностей независимых событий, получаем

Теперь находим вероятности гипотез:

Ответ:

Задача 5. На заводе болты изготавливаются на трёх станках, которые производят соответственно 25%, 30% и 45% всего количества болтов. В продукции станков брак составляет соответственно 4%, 3% и 2%. Какова вероятность того, что болт, случайно взятый из поступившей продукции, окажется дефектным?

Решение

Обозначим события:

4 = (наудачу взятый болт изготовлен на /-м станке); i = 1, 2, 3;

В = (взятый наудачу болт окажется дефектным).

Из условия задачи по формуле классической вероятности находим вероятности гипотез:

Также по формуле классической вероятности находим условные вероятности:

По формуле полной вероятности находим

Ответ: 0,028.

Задача 6. Электронная схема принадлежит одной из трёх партий с вероятностями 0,25; 0,5 и 0,25. Вероятность того, что схема проработает сверх гарантийного срока службы для каждой из партий, соответственно составляет 0,1; 0,2 и 0,4. Найти вероятность того, что наугад взятая схема проработает сверх гарантийного срока службы.

Решение

Обозначим события:

4 = (наугад взятая схема из г-й партии); i = 1, 2, 3;

В = (наугад взятая схема проработает сверх гарантийного срока службы).

По условию задачи известны вероятности гипотез:

Также известны условные вероятности:

По формуле полной вероятности находим

Ответ: 0,225.

Задача 7. Прибор содержит два блока, исправность каждого из которых необходима для функционирования прибора. Вероятности безотказной работы для этих блоков соответственно равны 0,99 и 0,97. Прибор вышел из строя. Определить вероятность того, что отказали оба блока.

Решение

Обозначим события:

Д = (z-й блок выйдет из строя); i = 1,2;

А = (устройство выйдет из строя).

Из условия задачи по свойству вероятностей противоположных событий получаем: ДД) = 1-0,99 = 0,01; ДД) = 1-0,97 = 0,03.

Событие А наступает только тогда, когда наступает хотя бы одно из событий Д или А 2 . Поэтому это событие равно сумме событий А = Д + А 2 .

По теореме сложения вероятностей совместных событий получаем

По формуле Байеса находим вероятность того, что устройство вышло из строя из-за отказа обоих блоков.

Ответ:

Задачи для самостоятельного решения Задача 1. На складе телевизионного ателье имеется 70% кинескопов, изготовленных заводом № 1; остальные кинескопы изготовлены заводом № 2. Вероятность того, что кинескоп не выйдет из строя в течение гарантийного срока службы, равна 0,8 для кинескопов завода № 1 и 0,7 - для кинескопов завода № 2. Кинескоп выдержал гарантийный срок службы. Найти вероятность того, что он изготовлен заводом № 2.

Задача 2. На сборку поступают детали с трёх автоматов. Известно, что 1-й автомат даёт 0,3% брака, 2-й - 0,2%, 3-й - 0,4%. Найти вероятность поступления на сборку бракованной детали, если с 1-го автомата поступили 1000, со 2-го - 2000, с 3-го - 2500 деталей.

Задача 3. На двух станках производятся одинаковые детали. Вероятность того, что деталь, произведённая на первом станке, будет стандартной, равна 0,8, а на втором - 0,9. Производительность второго станка втрое больше производительности первого. Найти вероятность того, что стандартной будет деталь, взятая наудачу с транспортёра, на который поступают детали с обоих станков.

Задача 4. Руководитель компании решил воспользоваться услугами двух из трёх транспортных фирм. Вероятности несвоевременной доставки груза для первой, второй и третьей фирм равны соответственно 0,05; 0,1 и 0,07. Сопоставив эти данные с данными о безопасности грузоперевозок, руководитель пришёл к выводу о равнозначности выбора и решил сделать его по жребию. Найти вероятность того, что отправленный груз будет доставлен своевременно.

Задача 5. Прибор содержит два блока, исправность каждого из которых необходима для функционирования прибора. Вероятности безотказной работы для этих блоков соответственно равны 0,99 и 0,97. Прибор вышел из строя. Определите вероятность того, что отказал второй блок.

Задача 6. В сборочный цех поступают детали с трёх автоматов. Первый автомат даёт 3% брака, второй - 1% и третий - 2%. Определить вероятность попадания на сборку небракованной детали, если с каждого автомата поступило соответственно 500, 200, 300 деталей.

Задача 7. На склад поступает продукция трёх фирм. Причём продукция первой фирмы составляет 20%, второй - 46% и третьей - 34%. Известно также, что средний процент нестандартных изделий для первой фирмы равен 5%, для второй - 2% и для третьей - 1%. Найти вероятность того, что наудачу взятое изделие произведено второй фирмой, если оно оказалось стандартным.

Задача 8. Брак в продукции завода вследствие дефекта а составляет 5%, причём среди забракованных по признаку а продукции в 10% случаев встречается дефект р. А в продукции, свободной от дефекта а , дефект р встречается в 1% случаев. Найти вероятность встречи дефекта Р во всей продукции.

Задача 9. В фирме имеются 10 новых автомобилей и 5 старых, которые ранее находились в ремонте. Вероятность исправной работы для нового авто равна 0,94, старого - 0,91. Найти вероятность того, что наудачу выбранный автомобиль будет исправно работать.

Задача 10. Два датчика посылают сигналы в общий канал связи, причём первый из них посылает вдвое больше сигналов, чем второй. Вероятность получить искажённый сигнал от первого датчика равна 0,01, от второго - 0,03. Какова вероятность получить искажённый сигнал в общем канале связи?

Задача 11. Имеется пять партий изделий: три партии по 8 штук, из которых 6 стандартных и 2 нестандартных, и две партии по 10 штук, из которых 7 стандартных и 3 нестандартных. Наудачу выбирают одну из партий, а из этой партии берут деталь. Определить вероятность того, что взятая деталь будет стандартной.

Задача 12. Сборщик получает в среднем 50% деталей первого завода, 30% - второго завода и 20% - третьего завода. Вероятность того, что деталь первого завода отличного качества, равна 0,7; для деталей второго и третьего заводов соответственно 0,8 и 0,9. Наудачу взятая деталь оказалась отличного качества. Найти вероятность того, что деталь изготовлена первым заводом.

Задача 13. Таможенный досмотр автомашин осуществляют два инспектора. В среднем из 100 машин 45 проходят через первого инспектора. Вероятность того, что при досмотре машина, соответствующая таможенным правилам, не будет задержана, составляет 0,95 у первого инспектора и 0,85 - у второго. Найти вероятность того, что машина, соответствующая таможенным правилам, не будет задержана.

Задача 14. Детали, необходимые для сборки прибора, поступают с двух автоматов, производительность которых одинакова. Вычислите вероятность поступления на сборку стандартной детали, если один из автоматов даёт в среднем 3% нарушения стандарта, а второй - 2%.

Задача 15. Тренер по тяжёлой атлетике рассчитал, что для получения командных зачётных очков в данной весовой категории спортсмен должен толкнуть штангу в 200 кг. На место в команде претендуют Иванов, Петров и Сидоров. Иванов за время тренировок пытался поднять такой вес в 7 случаях, а поднял в 3 из них. Петров поднял в 6 случаях из 13, а Сидоров имеет 35%-ную вероятность успешно справиться со штангой. Тренер случайным жребием выбирает одного спортсмена в команду.

  • а) Найти вероятность того, что выбранный спортсмен принесёт команде зачётные очки.
  • б) Команда не получила зачётных очков. Найти вероятность того, что выступал Сидоров.

Задача 16. В белом ящике 12 красных и 6 синих шаров. В черном - 15 красных и 10 синих шаров. Бросают игральный кубик. Если выпадет количество очков, кратное 3, то наугад берут шар из белого ящика. Если выпадет любое другое количество очков, то наугад берут шар из черного ящика. Какова вероятность появления красного шара?

Задача 17. В двух ящиках имеются радиолампы. В первом ящике содержится 12 ламп, из них 1 нестандартная; во втором 10 ламп, из них 1 нестандартная. Из первого ящика наудачу взята лампа и переложена во второй. Найти вероятность того, что наудачу извлеченная из второго ящика лампа будет нестандартной.

Задача 18. В урну, содержащую два шара, опущен белый шар, после чего из нее наудачу извлечен один шар. Найти вероятность того, что извлеченный шар окажется белым, если равновозможны все возможные предположения о первоначальном составе шаров (по цвету).

Задача 19. В ящик, содержащий 3 одинаковые детали, брошена стандартная деталь, а затем наудачу одна деталь извлечена. Найти вероятность того, что извлечена стандартная деталь, если равновероятны все возможные предположения о числе стандартных деталей, первоначально находящихся в ящике.

Задача 20. Для улучшения качества радиосвязи используются два радиоприемника. Вероятность приема сигнала каждым приемником равна 0,8, и эти события (прием сигнала приемником) независимы. Определить вероятность приема сигнала, если вероятность безотказной работы за время сеанса радиосвязи для каждого приемника равна 0,9.