Ток заряд время. Что такое сила тока

Понятие о силе тока является основой современной электротехники. Без этих базовых знаний невозможно сделать расчеты к схемам, выполнить действия по электрике, предотвратить, выявить и устранить повреждение в цепи.

Как возникает

Для понимания, что такое сила тока, следует знать условие его возникновения – существование частиц со свободным зарядом. Он перемещается через проводник (его поперечное сечение) от одной точки к другой. Физика силы тока заключается в упорядоченном движении электронов, на которые действует электрическое поле от источника питания. Чем большее количество заряженных частиц переносится, и чем быстрее их передвижение в одном направлении, тем больший заряд дойдет до места назначения.

Помимо источника питания, элементами замкнутой цепи являются соединительные провода, по которым проходит электричество, и потребители энергии (установки, резисторы).

Дополнительная информация. В проводниках из металла в роли передатчика зарядов выступают электроны, газообразных – ионы, жидких – перенесение заряженных частиц выполняется с помощью обоих видов частиц. Нарушение порядка прохождения говорит о хаотичном движении зарядов, цепь при котором станет обесточенной.

Определение

Сила тока в проводнике – это количество электричества, перемещаемое через поперечное сечение за единичный интервал времени. Чтобы увеличить данное значение, нужно изъять из схемы лампу либо повысить магнитное поле, создаваемое батарейкой.

Единицей измерения силы электрического тока по международной системе СИ (Systеme International) считается ампер (А), названный по фамилии выдающегося французского научного деятеля XIX века Андре-Мари Ампера.

Дополнительная информация. Ампер – достаточно внушительная электрическая мера. Для жизни человека представляет смертельную опасность токовая величина до 0,1A. Горящая бытовая лампочка на 100 Вт пропускает электричество примерно в 0,5 А. В комнатном обогревателе это значение доходит до 10 А, портативному калькулятору будет достаточной одна тысячная доля ампера.

В электротехнической практике замеры малых величин могут выражаться в микро,- и миллиамперах.

Силу тока находят измерительным приспособлением (ампер,- или гальванометром), последовательно включая его в нужный участок цепи. Малые величины измеряют микро,- или миллиамперметром. Основными методами нахождения количества электричества при помощи приборов являются:

  • Магнитоэлектрический – при неизменной токовой величине. Такой способ отличают повышенная точность и малое потребление энергии;
  • Электромагнитный – для стационарных и изменяющихся величин. При использовании этого метода сила тока в цепи находится в результате преобразования магнитного поля в выходной сигнал модуляционного датчика;
  • Косвенный – основан на замере напряжения при известном сопротивлении. Далее вычисляют искомую величину по закону Ома, показанному ниже.

Согласно определению, силу тока (I ) можно найти по формуле:

I = q/t, где:

  • q – заряд, идущий поперек проводника (Кл);
  • t – длительность времени, затраченного на перемещение частиц (с).

Формула силы тока читается следующим образом: необходимая величина I – это отношение прошедшего через проводник заряда к используемому отрезку времени.

Обратите внимание! Сила тока определяется не только через заряд, но и расчетными формулами на основе закона Ома, который гласит: сила электричества прямо пропорциональна напряжению проводника и обратно пропорциональна его сопротивлению.

Формула закона Ома поможет найти силу тока, которая выглядит отношением:

I = U / R, здесь:

  • U – напряжение (В);
  • R – сопротивление (Ом).

Эта установленная связь физических величин используется для различных расчетов:

  • учитывающих характеристики источника питания;
  • для вычислений в цепях токов любого направления;
  • для многофазных цепей.

Обратите внимание! Если проводники соединяются последовательным способом, то электричество каждого из них равно. Параллельное соединение предусматривает количество амперов, которое складывается из суммы токовых значений каждого проводника.

Как найти мощность (скорость передачи или преобразования энергии) с помощью токового значения? Для этого нужно воспользоваться формулой:

Р = U*I, где умножаемые значения упоминались выше.

Виды

При постоянном и переменном электричестве его сила бывает разного характера. Для цепи с движением частиц в постоянном направлении все параметры остаются неизменными. Переменный вид способен менять свою величину при одном и том же или меняющемся направлении. Количество электричества при этом бывает:

  • мгновенным, зависящим от амплитудной величины и частоты колебаний, связанной с угловой частотой;
  • амплитудным – максимальным значением мгновенной силы тока за определенный период;
  • эффективным – при превращении энергии количество теплоты от обоих видов тока одинаково.

Электросети бытового назначения пропускают переменный ток, преобразующийся в постоянный при прохождении через блок питания электроприбора (компьютера, телевизора).

Величина силы тока – понятие, тесно связанное с электрической энергией, имеющей огромное значение для сферы быта, народного хозяйства, объектов стратегического назначения. Более того, электроэнергетика является экономической основой государства и определяющим вектором развития внутри страны и на международном уровне.

Видео

Невозможно. Понятие о токе является основой, на которой, словно дом на надежном фундаменте, выстраиваются дальнейшие расчеты электроцепей и приводятся новые и новые определения. Сила тока представляет собой одну из величин международной поэтому универсальной единицей измерения является Ампер (А).

Физический смысл данной единицы поясняют следующим образом: сила тока в один ампер возникает при движении обладающих зарядом частиц по двум проводникам бесконечной протяженности, между которыми промежуток в один метр. При этом возникающая на каждом метровом участке проводников численно равна 2*10 в степени -7 Ньютон. Обычно добавляют, что проводники расположены в вакууме (что позволяет нивелировать влияние промежуточной среды), а их сечение стремится к нулю (при этом проводимость максимальна).

Однако, как это обычно бывает, классические определения понятны лишь специалистам, которым, по сути, уже не интересны азы. А вот незнакомый с электричеством человек «запутается» еще больше. Поэтому поясним, что такое сила тока, буквально «на пальцах». Представим обыкновенную батарейку, от полюсов которой к лампочке идут два изолированных провода. В разрыв одного провода подключен выключатель. Как известно из начального курса физики, электрический ток - это движение частиц, обладающих собственным Обычно ими принято считать электроны (действительно, именно электрон обладает единичным отрицательным зарядом), хотя на самом деле все немного сложнее. Данные частицы характерны для проводящих материалов (металлы), а вот в газовых средах дополнительно переносят заряд ионы (вспоминаем термины «ионизация» и «пробой воздушного промежутка»); в полупроводниках проводимость не только электронная, но и дырочная (положительный заряд); в электролитических растворах проводимость чисто ионная (например, автомобильные аккумуляторы). Но вернемся к нашему примеру. В нем ток формирует движение именно свободных электронов. Пока выключатель не включен, цепь разомкнута, частицам двигаться некуда, следовательно, сила тока равна нулю. Но стоит «собрать схему», как электроны устремляются от отрицательного полюса батарейки к положительному, проходя через лампочку и вызывая ее свечение. Сила, заставляющая их двигаться, происходит от электрического поля, создаваемого батарейкой (ЭДС - поле - ток).

Сила тока - это отношение заряда ко времени. То есть фактически речь идет о количестве электричества, проходящего по проводнику за условную единицу времени. Можно привести аналогию с водой: чем сильнее открыт кран, тем больший объем воды пройдет по трубопроводу. Но если воду измеряют литрами (кубометрами), то ток - количеством носителей заряда или, что также верно, амперами. Вот так все просто. Нетрудно понять, что увеличить силу тока можно двумя способами: убрав из цепи лампочку (сопротивление, препятствие движению), а также повысив создаваемое батарейкой электрическое поле.

Собственно, мы подошли к тому, как в общем случае выполняется расчет силы тока. Существует много формул: например, для полной цепи, учитывающей влияние характеристик источника питания; для переменного и для многофазных систем и пр. Однако всех их объединяет единое правило - знаменитый закон Ома. Поэтому приведем его общий (универсальный) вид:

где I - ток, в Амперах; U - напряжение на выводах источника питания, в Вольтах; R - сопротивление цепи или участка, в Омах. Эта зависимость лишь подтверждает все вышесказанное: увеличения тока можно добиться двумя способами, через сопротивление (наша лампочка) и напряжение (параметр источника).

Что такое напряжение, и сила тока ?

Сегодня речь пойдет о самых базовых понятиях силы тока, напряжения, без общего понимания которых невозможно построение любого электротехнического устройства.

Итак, что же такое напряжение?

Попросту говоря напряжение - разница потенциала между двумя точками электрической цепи , измеряется в Вольтах. Стоит заметить что, напряжение всегда измеряется между двумя точками! То есть, когда говорят что напряжение на ножке контроллера 3 Вольта, подразумевается что разница потенциалов между ножкой контроллера и землей те самые 3 Вольта.

Земля(Масса, Ноль) - это точка электрической схемы с потенциалом 0 Вольт . Однако стоит заметить, что напряжение не всегда измеряется относительно земли. Например, замерив напряжение между двумя выводами контроллера, мы получим разницу электрических потенциалов данных точек схемы. То есть если на одной ножке 3 Вольта(То есть данная точка обладает потенциалом 3 Вольта относительно земли), а на второй 5Вольт(Опять же потенциал относительно земли), мы получим значение напряжения равное 2 вольтам, что равняется разнице потенциалов между точками 5 и 3 Вольта.

Из понятия напряжение вытекает следующее понятие - электрический ток. Из курса общей физики мы помним, что электрический ток есть направленное движение заряженных частиц по проводнику, измеряется в Амперах. Заряженные частицы движутся благодаря разнице потенциалов между точками. Принято считать, что ток происходит из точки с большим зарядом, в точку, обладающую меньшим зарядом. То есть, именно напряжение (разность потенциалов) создает условия протекания тока. При отсутствии напряжения - невозможен ток, то есть между точками с равным потенциалом ток отсутствует.

На своем пути, ток встречает препятствие в виде сопротивления, что препятствует его протеканию. Сопротивление измеряется в Омах. Подробнее о нем мы поговорим в следующем уроке. Однако, между током, напряжением и сопротивлением уже давно выведена следующая зависимость:

Где I - Сила тока в Амперах,U - Напряжение в Вольтах,R - Сопротивление в Омах.

Данное соотношение называется законом Ома. Так же справедливы следующие выводы из закона Ома:

Если у Вас ещё остались вопросы, задавайте их в комментариях. Лишь благодаря Вашим вопросам Мы сможем улучшить материал представленный на данном сайте!

На этом всё, в следующем уроке поговорим о сопротивлении.

Любое копирование, воспроизведение, цитирование материала, или его частей разрешено только с письменного согласия администрации MKPROG .RU . Незаконное копирование, цитирование, воспроизведение преследуется по закону!

В ходе этого урока будет дано определение явлению электрического тока, рассмотрены различные ситуации его протекания и различные его воздействия на тела. Мы также охарактеризуем ток, используя величину силы тока, дадим ее определение, а также рассмотрим ее связь с другими физическими величинами.

С этого урока мы начинаем повторять полученные нами в восьмом классе знания в об электрическом токе, а также углублять эти знания.

Определение. Электрический ток – направленное упорядоченное движение заряженных частиц (рис. 1).

Рис. 1. Движение заряженных частиц

Упомянутые частицы могут быть совершенно разными: электронами, ионами (как положительными, так и отрицательными). Даже обычное макротело (например, шарик), которому придан некоторый заряд и некоторая скорость, своим движением производит ток.

Важно также понимать, что упорядоченное движение не обязано распространяться на все частицы. Каждая частица может двигаться хаотически, однако в целом вся масса этих частиц смещается в определенном направлении, и именно это смещение обуславливает наличие тока (рис. 2).

Рис. 2. Упорядоченное движение

Для простоты мы будем изучать так называемый постоянный ток , то есть тот ток, при котором средняя скорость заряженных частиц не меняет ни своего значения, ни направления.

Главной физической величиной, характеризующей ток, является сила тока.

Ток имеет три основных действия (свойства).

  • Тепловое. При пропускании тока через проводник идет активное выделение тепла (рис. 3).

Рис. 3. Тепловое действие тока

  • Химическое. Протекание тока может влиять на химическую структуру веществ (рис. 4).

Рис. 4. Химическое действие тока

  • Магнитное. Наличие тока инициирует наличие магнитного поля (рис. 5).

Рис. 5. Магнитное действие тока

Сила тока определяется отношением заряда, прошедшего через поперечное сечение за единицу времени (за интервал времени) (рис. 6).

Определение. Сила тока – физическая величина, равная отношению заряда, прошедшего через поперечное сечение проводника, к промежутку времени, за который этот заряд прошел.

Единица измерения: А – ампер (в честь французского физика Андре-Мари Ампера (рис. 7 ).

Рис. 7. Андре-Мари Ампер (1775-1836)

Прибором для измерения силы тока является амперметр (рис. 8, 9). Это электрический прибор, который необходимо подключить в цепь последовательно тому участку, силу тока на котором необходимо измерить (рис. 10).

Рис. 8. Внешний вид амперметра

Рис. 9. Обозначение амперметра на электрической схеме

Рис. 10. Амперметр включается в цепь последовательно

Электрический ток можно сравнить с движением воды по трубе, а амперметр – прибор, который измеряет скорость этого движения.

Рассмотрим случай протекания постоянного тока в цилиндрическом проводнике и выведем формулу, определяющую скорость упорядоченного движения электронов в металлах.

Рис. 11. Схема протекания тока в проводнике

Запишем определение силы тока:

За время поперечное сечение успели пересечь все те электроны, находящиеся в пространстве проводника, ограниченном длиной (расстояние, которое прошли электроны за время ). Поэтому можно посчитать как:

Здесь: - заряд одной частицы; - концентрация электронов в проводнике.

Подставим это равенство в определение силы тока, и с учетом того, что - модуль значения заряда электрона:

Средняя скорость упорядоченного движения зарядов.

Получаем формулу:

То есть сила тока и скорость направленного движения электронов - прямо пропорциональные величины.

Для определения концентрации электронов необходимо применить формулы из курса молекулярной физики. Если сделать предположение, что на каждый атом вещества проводника приходится один электрон, то тогда справедливо:

Зная, что , получаем:

Подставим и , где - молярная масса (масса одного моль вещества); - число Авогадро (количество молекул в одном моле вещества). Получим:

То есть при нашем допущении концентрация свободных электронов зависит только от материала проводника (плотности и молярной массы).

Рис. 12. Все электроны по всему объему проводника начинают двигаться практически одновременно

На следующем уроке мы рассмотрим условия, наличие которых обязательно для существования тока.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Илекса, 2005.
  3. Мякишев Г.Я., Синяков А.З., Слободсков Б.А. Физика. Электродинамика. - М.: 2010.
  1. Интернет-портал «Physics.ru» ().
  2. Интернет-портал «Mugo.narod.ru» ().
  3. Интернет-портал «Электрический ток. Сила и плотность тока» ().

Домашнее задание

  1. Стр. 101: № 775. Физика. Задачник. 10-11 классы. Рымкевич А.П. - М.: Дрофа, 2013. ()
  2. Движутся ли заряженные частицы в проводнике, по которому не течет ток?
  3. Какие действия тока можно наблюдать, пропуская ток через морскую воду?
  4. При какой силе тока за 4 с сквозь поперечное сечение проводника проходит 32 Кл?
  5. *Возможен ли электрический ток в отсутствии электрического поля?

Мы начинаем публикацию материалов новой рубрики “” и в сегодняшней статье речь пойдет о фундаментальных понятиях, без которых не проходит обсуждение ни одного электронного устройства или схемы. Как вы уже догадались, я имею ввиду ток, напряжение и сопротивление 😉 Кроме того, мы не обойдем стороной закон, который определяет взаимосвязь этих величин, но не буду забегать вперед, давайте двигаться постепенно.

Итак, давайте начнем с понятия напряжения .

Напряжение.

По определению напряжение – это энергия (или работа), которая затрачивается на перемещение единичного положительного заряда из точки с низким потенциалом в точку с высоким потенциалом (т. е. первая точка имеет более отрицательный потенциал по сравнению со второй). Из курса физики мы помним, что потенциал электростатического поля – это скалярная величина, равная отношению потен­циальной энергии заряда в поле к этому заряду. Давайте рассмотрим небольшой пример:

В пространстве действует постоянное электрическое поле, напряженность которого равна E . Рассмотрим две точки, расположенные на расстоянии d друг от друга. Так вот напряжение между двумя точками представляет из себя ни что иное, как разность потенциалов в этих точках:

В то же время не забываем про связь напряженности электростатического поля и разности потенциалов между двумя точками:

И в итоге получаем формулу, связывающую напряжение и напряженность:

В электронике, при рассмотрении различных схем, напряжение все-таки принято считать как разность потенциалов между точками. Соответственно, становится понятно, что напряжение в цепи – это понятие, связанное с двумя точками цепи. То есть говорить, к примеру, “напряжение в резисторе” – не совсем корректно. А если говорят о напряжении в какой-то точке, то подразумевают разность потенциалов между этой точкой и “землей” . Вот так плавно мы вышли к еще одному важнейшему понятию при изучении электроники, а именно к понятию “земля” 🙂 Так вот “землей” в электрических цепях чаще всего принято считать точку нулевого потенциала (то есть потенциал этой точки равен 0).

Давайте еще пару слов скажем о единицах, которые помогают охарактеризовать величину напряжения . Единицей измерения является Вольт (В) . Глядя на определение понятия напряжения мы можем легко понять, что для перемещения заряда величиной 1 Кулон между точками, имеющими разность потенциалов 1 Вольт , необходимо совершить работу, равную 1 Джоулю . С этим вроде бы все понятно и можно двигаться дальше 😉

А на очереди у нас еще одно понятие, а именно ток .

Ток, сила тока в цепи.

Что же такое электрический ток ?

Давайте подумаем, что будет происходить если под действие электрического поля попадут заряженные частицы, например, электроны…Рассмотрим проводник, к которому приложено определенное напряжение :

Из направления напряженности электрического поля (E ) мы можем сделать вывод о том, что title="Rendered by QuickLaTeX.com" height="16" width="60" style="vertical-align: -4px;"> (вектор напряженности всегда направлен в сторону уменьшения потенциала). На каждый электрон начинает действовать сила:

Где e – это заряд электрона.

И поскольку электрон является отрицательно заряженной частицей, то вектор силы будет направлен в сторону противоположную направлению вектора напряженности поля. Таким образом, под действием силы частицы наряду с хаотическим движением приобретают и направленное (вектор скорости V на рисунке). В результате и возникает электрический ток 🙂

Ток – это упорядоченное движение заряженных частиц под воздействием электрического поля.

Важным нюансом является то, что принято считать, что ток протекает от точки с более положительным потенциалом к точке с более отрицательным потенциалом, несмотря на то, что электрон перемещается в противоположном направлении.

Носителями заряда могут выступать не только электроны. Например, в электролитах и ионизированных газах протекание тока в первую очередь связано с перемещением ионов, которые являются положительно заряженными частицами. Соответственно, направление вектора силы, действующей на них (а заодно и вектора скорости) будет совпадать с направлением вектора E . И в этом случае противоречия не возникнет, ведь ток будет протекать именно в том направлении, в котором движутся частицы 🙂

Для того, чтобы оценить ток в цепи придумали такую величину как сила тока. Итак, сила тока (I ) – это величина, которая характеризует скорость перемещения электрического заряда в точке. Единицей измерения силы тока является Ампер . Сила тока в проводнике равна 1 Амперу , если за 1 секунду через поперечное сечение проводника проходит заряд 1 Кулон .

Мы уже рассмотрели понятия силы тока и напряжения , теперь давайте разберемся каким образом эти величины связаны. И для этого нам предстоит изучить, что же из себя представляет сопротивление проводника .

Сопротивление проводника/цепи.

Термин “сопротивление ” уже говорит сам за себя 😉

Итак, сопротивление – физическая величина, характеризующая свойства проводника препятствовать (сопротивляться ) прохождению электрического тока.

Рассмотрим медный проводник длиной l с площадью поперечного сечения, равной S :

Сопротивление проводника зависит от нескольких факторов:

Удельное сопротивление – это табличная величина.

Формула, с помощью которой можно вычислить сопротивление проводника выглядит следующим образом:

Для нашего случая будет равно 0,0175 (Ом * кв. мм / м) – удельное сопротивление меди. Пусть длина проводника составляет 0.5 м , а площадь поперечного сечения равна 0.2 кв. мм . Тогда:

Как вы уже поняли из примера, единицей измерения сопротивления является Ом 😉

С сопротивлением проводника все ясно, настало время изучить взаимосвязь напряжения, силы тока и сопротивления цепи .

И тут на помощь нам приходит основополагающий закон всей электроники – закон Ома:

Сила тока в цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению рассматриваемого участка цепи.

Рассмотрим простейшую электрическую цепь:

Как следует из закона Ома напряжение и сила тока в цепи связаны следующим образом:

Пусть напряжение составляет 10 В, а сопротивление цепи равно 200 Ом. Тогда сила тока в цепи вычисляется следующим образом:

Как видите, все несложно 🙂

Пожалуй на этом мы и закончим сегодняшнюю статью, спасибо за внимание и до скорых встреч! 🙂