Вписанный угол, теория и задачи

В этой статье я расскажу как решать задачи, в которых используются .

Сначала, как обычно, вспомним определения и теоремы, которые нужно знать, чтобы успешно решать задачи на .

1. Вписанный угол - это угол, вершина которого лежит на окружности, а его стороны пересекают окружность:

2. Центральный угол - это угол, вершина которого совпадает с центром окружности:

Градусная величина дуги окружности измеряется величиной центрального угла, который на нее опирается.

В данном случае градусная величина дуги АС равна величине угла АОС.

3. Если вписанный и центральный угол опираются на одну дугу, то величина вписанного угла в два раза меньше центрального :

4. Все вписанные углы, которые опираются на одну дугу, равны между собой:

5. Вписанный угол, опирающийся на диаметр, равен 90°:

Решим несколько задач.

1 . Задание B7 (№ 27887)

Найдем величину центрального угла, который опирается на ту же дугу:

Очевидно, что величина угла АОС равна 90°, следовательно, угол АВС равен 45°

Ответ: 45°

2 .Задание B7 (№ 27888)

Найдите величину угла ABC. Ответ дайте в градусах.

Очевидно, что угол АОС равен 270°, тогда угол АВС равен 135°.

Ответ: 135°

3 . Задание B7 (№ 27890)

Найдите градусную величину дуги AC окружности, на которую опирается угол ABC. Ответ дайте в градусах.

Найдем величину центрального угла, который опирается на дугу АС:

Величина угла АОС равна 45°, следовательно, градусная мера дуги АС равна 45°.

Ответ: 45°.

4 . Задание B7 (№ 27885)

Найдите угол ACB, если вписанные углы ADB и DAE опираются на дуги окружности, градусные величины которых равны соответственно и . Ответ дайте в градусах.

Угол ADB опирается на дугу АВ, следовательно, величина центрального угла АОВ равна 118°, следовательно, угол BDA равен 59°, и смежный ему угол ADC равен 180°-59°=121°

Аналогично, угол DOE равен 38° и соответствующий вписанный угол DAE равен 19°.

Рассмотрим треугольник ADC:

Сумма углов треугольника равна 180°.

Величина угла АСВ равна 180°- (121°+19°)=40°

Ответ: 40°

5 . Задание B7 (№ 27872)

Стороны четырехугольника ABCD AB, BC, CD и AD стягивают дуги описанной окружности, градусные величины которых равны соответственно , , и . Найдите угол B этого четырехугольника. Ответ дайте в градусах.

Угол В опирается на дугу АDC, величина которой равна сумме величин дуг AD и CD, то есть 71°+145°=216°

Вписанный угол В равен половине величины дуги ADC, то есть 108°

Ответ: 108°

6 . Задание B7 (№ 27873)

Точки A, B, C, D, расположенные на окружности, делят эту окружность на четыре дуги AB, BC, CD и AD, градусные величины которых относятся соответственно как 4:2:3:6 . Найдите угол A четырехугольника ABCD. Ответ дайте в градусах.

(см. чертеж предыдущей задачи)

Так как у нас дано отношение величин дуг, введем единичный элемент х. Тогда величины каждой дуги будут выражаться таким соотношением:

АВ=4х, ВС=2х, СD=3х, AD=6x. Все дуги образуют окружность, то есть их сумма равна 360°.

4х+2х+3х+6х=360°, отсюда х=24°.

Угол А опирается на дуги ВС и CD, которые в сумме имеют величину 5х=120°.

Следовательно, угол А равен 60°

Ответ: 60°

7 . Задание B7 (№ 27874)

Четырехугольник ABCD вписан в окружность. Угол ABC равен , угол CAD

Чаще всего процесс подготовки к ЕГЭ по математике начинается с повторения основных определений, формул и теорем, в том числе и по теме «Центральный и вписанный в окружность угол». Как правило, данный раздел планиметрии изучается еще в средней школе. Неудивительно, что многие учащиеся сталкиваются с необходимостью повторения базовых понятий и теорем по теме «Центральный угол окружности». Разобравшись с алгоритмом решения подобных задач, школьники смогут рассчитывать на получение конкурентных баллов по итогам сдачи единого госэкзамена.

Как легко и эффективно подготовиться к прохождению аттестационного испытания?

Занимаясь перед сдачей единого государственного экзамена, многие старшеклассники сталкиваются с проблемой поиска нужной информации по теме «Центральный и вписанный углы в окружности». Далеко не всегда школьный учебник имеется под рукой. А поиск формул в Интернете порой отнимает очень много времени.

«Прокачать» навыки и улучшить знания в таком непростом разделе геометрии, как планиметрия, вам поможет наш образовательный портал. «Школково» предлагает старшеклассникам и их преподавателям по-новому выстроить процесс подготовки к сдаче единого госэкзамена. Весь базовый материал представлен нашими специалистами в максимально доступной форме. Ознакомившись с информацией в разделе «Теоретическая справка», учащиеся узнают, какими свойствами обладает центральный угол окружности, как найти его величину и т. д.

Затем для закрепления полученных знаний и отработки навыков мы рекомендуем выполнить соответствующие упражнения. Большая подборка заданий на нахождение величины угла, вписанного в окружность, и других параметров представлена в разделе «Каталог». Для каждого упражнения наши специалисты прописали подробный ход решения и указали правильный ответ. Перечень задач на сайте постоянно дополняется и обновляется.

Готовиться к ЕГЭ, практикуясь в выполнении упражнений, к примеру, на нахождение величины центрального угла и длины дуги окружности, старшеклассники могут в онлайн-режиме, находясь в любом российском регионе.

При необходимости выполненное задание можно сохранить в разделе «Избранное», чтобы в дальнейшем вернуться к нему и еще раз разобрать принцип его решения.

Понятие вписанного и центрально угла

Введем сначала понятие центрального угла.

Замечание 1

Отметим, что градусная мера центрального угла равна градусной мере дуги, на которую он опирается .

Введем теперь понятие вписанного угла.

Определение 2

Угол, вершина которого лежит на окружности и стороны которого пересекают эту же окружность, называется вписанным углом (рис. 2).

Рисунок 2. Вписанный угол

Теорема о вписанном угле

Теорема 1

Градусная мера вписанного угла равняется половине градусной меры дуги, на которую он опирается.

Доказательство.

Пусть нам дана окружность с центром в точке $O$. Обозначим вписанный угол $ACB$ (рис. 2). Возможны три следующих случая:

  • Луч $CO$ совпадает с какой либо стороной угла. Пусть это будет сторона $CB$ (рис. 3).

Рисунок 3.

В этом случае дуга $AB$ меньше ${180}^{{}^\circ }$, следовательно, центральный угол $AOB$ равен дуге $AB$. Так как $AO=OC=r$, то треугольник $AOC$ равнобедренный. Значит, углы при основании $CAO$ и $ACO$ равны между собой. По теореме о внешнем угле треугольника, имеем:

  • Луч $CO$ делит внутренний угол на два угла. Пусть он пересекает окружность в точке $D$ (рис. 4).

Рисунок 4.

Получаем

  • Луч $CO$ не делит внутренний угол на два угла и не совпадает ни с одной его стороной (Рис. 5).

Рисунок 5.

Рассмотрим отдельно углы $ACD$ и $DCB$. По доказанному в пункте 1, получим

Получаем

Теорема доказана.

Приведем следствия из данной теоремы.

Следствие 1: Вписанные углы, которые опираются на одну и туже дугу равны между собой.

Следствие 2: Вписанный угол, который опирается на диаметр -- прямой.

Инструкция

Если известны радиус (R) круга и длина дуги (L), соответствующая искомому центральному углу (θ), рассчитать его можно как в градусах, так и в радианах. Полная определяется формулой 2*π*R и соответствует центральному углу в 360° или двум числам Пи, если вместо градусов использовать радианы. Поэтому исходите из пропорции 2*π*R/L = 360°/θ = 2*π/θ. Выразите из нее центральный угол в радианах θ = 2*π/(2*π*R/L) = L/R или градусах θ = 360°/(2*π*R/L) = 180*L/(π*R) и рассчитайте по полученной формуле.

По длине хорды (m), соединяющей точки , которые определяет центральный угол (θ), его величину тоже можно рассчитать, если известен радиус (R) круга. Для этого рассмотрите треугольник, образованный двумя радиусами и . Это равнобедренный треугольник, все известны, а найти нужно угол, лежащий напротив основания. Синус его половины равен отношению длины основания - хорды - к удвоенной длине боковой стороны - радиуса. Поэтому используйте для вычислений обратную синусу функцию - арксинус: θ = 2*arcsin(½*m/R).

Центральный угол может быть задан и в долях оборота или от развернутого угла. Например, если нужно найти центральный угол, соответствующей четверти полного оборота, разделите 360° на четверку: θ = 360°/4 = 90°. Эта же величина в радианах должна быть 2*π/4 ≈ 3,14/2 ≈ 1,57. Развернутый угол равен половине полного оборота, поэтому, например, центральный угол, соответствующий четверти от него будет вдвое меньше рассчитанных выше значений как в градусах, так и в радианах.

Обратная синусу тригонометрическая функция называется арксинусом . Она может принимать значения, лежащие в пределах половины числа Пи как в положительную, так и в отрицательную стороны при измерении в радианах. При измерении в градусах эти значения будут находиться, соответственно, в диапазоне от -90° до +90°.

Инструкция

Некоторые «круглые» значения не обязательно вычислять, проще их запомнить. Например:- если аргумент функции равен нулю, то значение арксинуса от него тоже равно нулю;- от 1/2 равен 30° или 1/6 Пи, если измерять ;- арксинус от -1/2 равен -30° или -1/6 от числа Пи в ;- арксинус от 1 равен 90° или 1/2 от числа Пи в радианах;- арксинус от -1 равен -90° или -1/2 от числа Пи в радианах;

Для измерения значений этой функции от других аргументов проще всего воспользоваться стандартным калькулятором Windows, если под рукой есть . Чтобы запустить раскройте главное меню на кнопке «Пуск» ( или нажатием клавиши WIN), перейдите в раздел «Все программы», а затем в подраздел «Стандартные» и щелкните пункт «Калькулятор».

Переключите интерфейс калькулятора в тот режим работы, который позволяет вычислять тригонометрические функции. Для этого откройте в его меню раздел «Вид» и выберите пункт «Инженерный» или «Научный» (в зависимости от используемой операционной системы).

Введите значение аргумента, от которого надо вычислить арктангенс. Это можно делать, щелкая кнопки интерфейса калькулятора мышкой, или нажимая клавиши на , или скопировав значение (CTRL + C) и затем вставив его (CTRL + V) в поле ввода калькулятора.

Выберите единицы измерения, в которых вам нужно получить результат вычисления функции. Ниже поля ввода помещены три варианта, из которых вам нужно выбрать (щелкнув его мышкой) одни - , радианы или рады.

Поставьте отметку в чекбоксе, который инвертирует функции, указанные на кнопках интерфейса калькулятора. Рядом с ним стоит короткая надпись Inv.

Щелкните кнопку sin. Калькулятор инвертирует привязанную к ней функцию, произведет вычисление и представит вам результат в заданных единицах измерения.

Видео по теме

Одной из распространенных геометрических задач является вычисление площади кругового сегмента - части круга, ограниченной хордой и соответствующей хорде дугой окружности.

Площадь кругового сегмента равна разности площади соответствующего кругового сектора и площади треугольника, образованного радиусами соответствующего сегменту сектора и хордой, ограничивающей сегмент.

Пример 1

Длина хорды, стягивающей окружность равна величине а. Градусная мера дуги, соответствующей хорде, равна 60°. Найти площадь кругового сегмента.

Решение

Треугольник, образованный двумя радиусами и хордой, является равнобедренным, поэтому высота, проведенная из вершины центрального угла на сторону треугольника, образованную хордой, будет также являться биссектрисой центрального угла, поделив его пополам и медианой, поделив пополам хорду. Зная, что синус угла в равен отношению противолежащего катета к гипотенузе, можно вычислить величину радиуса:

Sin 30°= a/2:R = 1/2;

Sc = πR²/360°*60° = πa²/6

S▲=1/2*ah, где h - высота, проведенная из вершины центрального угла к хорде. По теореме Пифагора h=√(R²-a²/4)= √3*a/2.

Соответственно, S▲=√3/4*a².

Площадь сегмента, вычисляемая как Sсег = Sc - S▲, равна:

Sсег = πa²/6 - √3/4*a²

Подставив числовое значение вместо величины a, можно с легкостью вычислить числовое значение площади сегмента.

Пример 2

Радиус окружности равен величине а. Градусная мера дуги, соответствующей сегменту, равна 60°. Найти площадь кругового сегмента.

Решение:

Площадь сектора, соответствующего заданному углу можно вычислить по следующей формуле:

Sc = πа²/360°*60° = πa²/6,

Площадь соответствующего сектору треугольника вычисляется следующим образом:

S▲=1/2*ah, где h - высота, проведенная из вершины центрального угла к хорде. По теореме Пифагора h=√(a²-a²/4)= √3*a/2.

Соответственно, S▲=√3/4*a².

И, наконец, площадь сегмента, вычисляемая как Sсег = Sc - S▲, равна:

Sсег = πa²/6 - √3/4*a².

Решения в обоих случаях практически идентичны. Таким образом можно сделать вывод, что для вычисления площади сегмента в простейшем случае достаточно знать величину угла, соответствующего дуге сегмента и один из двух параметров - либо радиус окружности, либо длину хорды, стягивающей дугу окружности, образующую сегмент.

Источники:

  • Сегмент - геометрия

Центральный угол - это угол, вершина которого находится в центре окружности.
Вписанный угол - угол, вершина которого лежит на окружности, а стороны пересекают ее.

На рисунке - центральные и вписанные углы, а также их важнейшие свойства.

Итак, величина центрального угла равна угловой величине дуги, на которую он опирается . Значит, центральный угол величиной в 90 градусов будет опираться на дугу, равную 90°, то есть круга. Центральный угол, равный 60°, опирается на дугу в 60 градусов, то есть на шестую часть круга.

Величина вписанного угла в два раза меньше центрального, опирающегося на ту же дугу .

Также для решения задач нам понадобится понятие «хорда».

Равные центральные углы опираются на равные хорды.

1. Чему равен вписанный угол, опирающийся на диаметр окружности? Ответ дайте в градусах.

Вписанный угол, опирающийся на диаметр, - прямой.

2. Центральный угол на 36° больше острого вписанного угла, опирающегося на ту же дугу окружности. Найдите вписанный угол. Ответ дайте в градусах.

Пусть центральный угол равен х, а вписанный угол, опирающийся на ту же дугу, равен у.

Мы знаем, что х = 2у.
Отсюда 2у = 36 + у,
у = 36.

3. Радиус окружности равен 1. Найдите величину тупого вписанного угла, опирающегося на хорду, равную . Ответ дайте в градусах.

Пусть хорда АВ равна . Тупой вписанный угол, опирающийся на эту хорду, обозначим α.
В треугольнике АОВ стороны АО и ОВ равны 1, сторона АВ равна . Нам уже встречались такие треугольники. Очевидно, что треугольник АОВ - прямоугольный и равнобедренный, то есть угол АОВ равен 90°.
Тогда дуга АСВ равна 90°, а дуга АКВ равна 360° - 90° = 270°.
Вписанный угол α опирается на дугу АКВ и равен половине угловой величины этой дуги, то есть 135°.

Ответ: 135.

4. Хорда AB делит окружность на две части, градусные величины которых относятся как 5:7. Под каким углом видна эта хорда из точки C, принадлежащей меньшей дуге окружности? Ответ дайте в градусах.

Главное в этой задаче - правильный чертеж и понимание условия. Как вы понимаете вопрос: «Под каким углом хорда видна из точки С?»
Представьте, что вы сидите в точке С и вам необходимо видеть всё, что происходит на хорде АВ. Так, как будто хорда АВ - это экран в кинотеатре:-)
Очевидно, что найти нужно угол АСВ.
Сумма двух дуг, на которые хорда АВ делит окружность, равна 360°, то есть
5х + 7х = 360°
Отсюда х = 30°, и тогда вписанный угол АСВ опирается на дугу, равную 210°.
Величина вписанного угла равна половине угловой величины дуги, на которую он опирается, значит, угол АСВ равен 105°.