Что называется горючей средой. Гпн-причины образования горючей среды. Пожары в быту

Все горючие (сгораемые) вещества содержат углерод и водород, основные компоненты газо-воздушной смеси, участвующие в реакции горения. Температура воспламенения горючих веществ и материалов различна и не превышает для большинства 300°С.

Физико-химические основы горения заключаются в термическом разложении вещества или материала до углеводородных паров и газов, которые под воздействием высоких температур вступают в химическое воздействие с окислителем (кислородом воздуха), превращаясь в процессе сгорания в углекислый газ (двуокись углерода), угарный газ (окись углерода), сажу (углерод) и воду, и при этом выделяется тепло и световое излучение.

Воспламенение представляет собой процесс распространение пламени по газопаровоздушной смеси. При скорости истечения горючих паров и газов с поверхности вещества равной скорости распространения пламени по ним наблюдается устойчивое пламенное горение. Если же скорость пламени больше скорости истечения паров и газов, то происходит выгорание газопаровоздушной смеси и самозатухание пламени, т.е. вспышка. В зависимости от скорости истечения газов и скорости распространения пламени по ним можно наблюдать:

Горение на поверхности материала, когда скорость выделения горючей смеси с поверхности материала равна скорости распространения огня по ней;

Горение с отрывом от поверхности материала, когда скорость выделения горючей смеси больше скорости распространения пламени по ней.

Горение газопаровоздушной смеси подразделяется на диффузионное или кинетическое. Основным отличием является содержание или отсутствие окислителя (кислорода воздуха) непосредственно в горючей газопаровоздушной смеси.

Кинетическое горение представляет собой горение предварительно перемешанных горючих газов и окислителя (кислорода воздуха). На пожарах этот вид горения встречается крайне редко. Однако он часто встречается в технологических процессах: в газовой сварке, резке и т.п.

При диффузионном горении окислитель поступает в зону горения извне. Поступает он, как правило, снизу пламени вследствие разрежения, которое создается у его основания. В верхней части пламени, выделяющееся в процессе горения тепло, создает давление. Основная реакция горения (окисления) происходит на границе пламени, поскольку истекающие с поверхности вещества газовые смеси препятствуют проникновению окис­лителя вглубь пламени (вытесняют воздух). Большая часть горючей смеси в центре пламени, не вступившая в реакцию окисления с кислородом, представляет собой продукты неполного горения (СО, СН, углерод и пр.).

Диффузионное горение, в свою очередь, бывает ламинарным (спокойным) и турбулентным (неравномерным во времени и пространстве). Ламинарное горение характерно при равенстве скоростей истечения горючей смеси с поверхности материала и скорости распространения пламени по ней. Турбулентное горение наступает, когда скорость выхода горючей смеси значительно превышает скорость распространения пламени. В этом случае граница пламени становится неустойчивой вследствие большой диффузии воздуха в зону горения. Неустойчивость вначале возникает у вершины пламени, а затем перемещается к основанию. Такое горение встречается на пожарах при объемном его развитии*(см. ниже).

Горение веществ и материалов возможно только при определенном количестве кислорода в воздухе. Содержание кислорода, при котором исключается возможность горения различных веществ и материалов, устанавливается опытным путем. Так, для картона и хлопка самозатухание наступает при 14% (об.) кислорода, а полиэфирной ваты - при 16% (об.).

Исключение окислителя (кислорода воздуха) является одной из мер пожарной профилактики. Поэтому хранение легковоспламеняющихся и горючих жидкостей, карбида кальция, щелочных металлов, фосфора долж­но осуществляться в плотно закрытой таре.

Источники зажигания

Необходимым условием воспламенения горючей смеси являю источники зажигания. Источники зажигания подразделяются на открытый огонь, тепло нагревательных элементов и приборов, электрическую энергию, энергию механических искр, разрядов статического электричества и молнии, энергию процессов саморазогревания веществ и матери лов (самовозгорание) и т.п. Выявлению имеющихся на производстве источников зажигания должно быть уделено особое внимание.

Характерные параметры источников зажигания принимаются:

Температура канала молнии - 30000°С при силе тока 200000 А и времен действия около 100 мкс. Энергия искрового разряда вторичного воздействия молнии превышает 250 мДж и достаточна для воспламенения горючих материалов минимальной энергией зажигания до 0,25 Дж. Энергия искровых разрядов при заносе высокого потенциала в здание по металлическим коммуникациям достигает значений 100 Дж и более, что достаточно для воспламенения всех горючих материалов.

Поливинилхлоридная изоляция электрического кабеля (провода) воспламеняется при кратности тока короткого замыкания более 2,5.

Температура сварочных частиц и никелевых частиц ламп накаливания достигает 2100°С. Температура капель при резке металла 1500°С. Температура дуги при сварке и резке достигает 4000°С.

Зона разлета частиц при коротком замыкании при высоте расположения провода 10 м колеблется от 5 (вероятность попадания 92%) до 9 (вероятное попадания 6%) м; при расположении провода на высоте 3 м - от 4 (96%) до 8 (1%); при расположении на высоте 1 м - от 3 (99%) до 6 м (6%).

Максимальная температура, "С, на колбе электрической лампочки накаливания зависит от мощности, Вт: 25 Вт - 100°С; 40 Вт - 150°С; 75 Вт - 25 100 Вт - 300°С; 150 Вт - 340°С; 200 Вт - 320°С; 750 Вт - 370°С.

Искры статического электричества, образующегося при работе людей с движущимися диэлектрическими материалами, достигают величин от 2,5 до 7,5 мДж.

Температура пламени (тления) и время горения (тления), °С (мин), некоторых малокалорийных источников тепла: тлеющая папироса - 320-410 (2-2,5); тлеющая сигарета - 420-460 (26-30); горящая спичка - 620-640 (0,33).

Для искр печных труб, котельных, труб паровозов и тепловозов, а также других машин, костров установлено, что искра диаметром 2 мм пожароопасна, если имеет температуру около 1000°С, диаметром 3 мм - 800°С, диаметром 5 мм - 600 градусов.

Самовозгорание

Самовозгорание присуще многим горючим веществам и материалам. Это отличительная особенность данной группы материалов.

Самовозгорание бывает следующих видов: тепловое, химическое, микробиологическое.

Тепловое самовозгорание выражается в аккумуляции материалом тепла, в процессе которого происходит самонагревание материала. Температура самонагревания вещества или материала является показателем его пожароопасности. Для большинства горючих материалов этот показатель лежит в пределах от 80 до 150°С: бумага - 100°С; войлок строительный - 80°С; дерматин - 40°С; древесина: сосновая - 80, дубовая 100, еловая - 120°С; хлопок-сырец - 60°С. Продолжительное тление до начала пламенного горения является отличительной характеристикой процессов теплового самовозгорания. Дан­ные процессы обнаруживаются по длительному и устойчивому запаху тлею­щего материала.

Химическое самовозгорание сразу проявляется в пламенном горе­нии. Для органических веществ данный вид самовозгорания происходит при контакте с кислотами (азотной, серной), растительными и техниче­скими маслами. Масла и жиры, в свою очередь, способны к самовозгора­нию в среде кислорода. Неорганические вещества способны самовозго­раться при контакте с водой (например, гидросульфит натрия). Спирты самовозгораются при контакте с перманганатом калия. Аммиачная селит­ра самовозгорается при контакте с суперфосфатом и пр.

Микробиологическое самовозгорание связано с выделением тепло­вой энергии микроорганизмами в процессе жизнедеятельности в питатель­ной для них среде (сено, торф, древесные опилки и т.п.).

На практике чаще всего проявляются комбинированные процессы самовозгорания: тепловые и химические.

Условия распространения пожара.

Развитие пожара зависит от многих факторов: физико-химических свойств горящего материала; пожарной нагрузки, под которой понимается масса всех горючих и трудногорючих материалов, находящихся в горящем помещении; скорости выгорания пожарной нагрузки; газообмена очага по­жара с окружающей средой и с внешней атмосферой и т.п.

В зависимости от средней скорости выгорания веществ и материа­лов развитие пожара может принимать ту или иную динамику.

Пример бензин выгорает со скоростью 61,7-10 3 ; дизельное топливо - 42,0-10 3 ; мебель в жилых и административ­ных зданиях влажностью 8-10% - 14,0-10 3 ; книги, журналы - 4,2-10 3 ; резина - 11,2-Ю 3 ; хлопок+капрон (3:1) - 12,5-10 3 кг/(м 2 -с).

В источниках приводятся общие схемы развития пожара, которые включают несколько основных фаз (экспериментальные дан­ные для помещения размером 5x4x3 м, отношением площади оконного про­ема и площади пола 25%, пожарной нагрузкой 50 кг/м 2 - древесные бруски):

I фаза (10 мин) - начальная стадия, включающая переход возгора­ния в пожар (1-3 мин) и рост зоны горения (5-6*мин). В течение первой фазы происходит преимущественно линейное распростра­нение огня вдоль горючего вещества или материала. Горение сопровождается обиль­ным дымовыделением, что затрудняет определение места очага пожара. Среднеобъемная температура повышается в помещении до 200°С (темп увеличения среднеобъемной температуры в помещении 15°С в 1 мин). Приток воздуха в помещение увеличивается. Поэтому очень важно в это время обеспечить изоляцию помещения от наружного воздуха (не рекомендуется открывать или вскрывать окна и двери в горящее помещение. В некоторых случаях, при достаточном обеспечении герме­тичности помещения, наступает самозатухание пожара) и вызвать пожарные подразделения. Если очаг пожара виден, необходимо по возможности принять меры тушению пожара первичными средствами пожаротушения.

Продолжительность I фазы составляет 2-30% продолжительности пожара

II фаза (30-40 мин) - стадия объемного развития пожара.

Бурный процесс, температура внутри помещения поднимается до 250-300° начинается объемное развитие пожара, когда пламя заполняет весь объем помещения, и процесс распространения пламени происходит уже не поверхностно, дистанционно, через воздушные разрывы. Разрушение остекления через 15-20 ми от начала пожара. Из-за разрушения остекления приток свежего воздуха резко увеличивает развитие пожара. Темп увеличения среднеобъемной температуры - до 50°С в 1 мин. Температура внутри помещения повышается с 500-600 до 800 - 900°С. Максимальная скорость выгорания, - 10-12 мин.

Стабилизация пожара происходит на 20-25 минуте от начала пожара и продолжается 20-30 мин.

III фаза - затухающая стадия пожара.

Догорание в виде медленного тления.

Температурное поле внутреннего пожара неравномерно в объем помещения. Так, по данным, при горении бензина на площади 2 в помещении объемом 100 м 3 на 15 минуте в зоне горения температур составила 900°С, а в самой удаленной точке 200°С. При этом у потолка температура достигала 800°С и более, по центру высоты помещения 500°С, у пола - 200°С.

Нагретые продукты горения преимущественно концентрируются верхней части помещения, что особенно характерно для помещений высокими потолками. Поэтому в условиях задымленного помещения наилучшая видимость и соответственно наименьшая концентрация отравляющих веществ у припольного пространства.

Исходя из анализа динамики развития пожара, необходимо сделать некоторые выводы:

1. Автоматические системы пожарной сигнализации и тушения пожара должны сработать в начале 1-й фазы развития пожара. В этой фазе пожар еще не достиг максимальной интенсивности развития.

При отсутствии автоматических систем сигнализации о пожаре время сообщения в пожарную охрану значительно увеличивается, в том числе безуспешными попытками ликвидировать возгорание без вызова пожарной охраны первичными средствами пожаротушения.

2. Тушение пожара подразделениями пожарной охраны начинается, как правило, через 10-15 мин после извещения о пожаре, т.е. через 20 мин после его возникновения (3-5 мин до срабатывания системы сигнализации о пожаре; 5-10 мин - следование на пожар; 3-5 мин - подготовка к тушению пожара). К этому моменту пожар принимает объемную форму развития и максимальную интенсивность.

В зависимости от характеристики горючей среды или горящего объекта пожары подразделяются на следующие классы и подклассы:

7 | | | | | | | | | | | |

Применяемые в различных технологиях аппараты и трубопроводы с пожаровзрывоопасными веществами при определенных условиях могут явиться местом возникновения пожара или взрыва. Для выявления возможности возникновения горения внутри технологического оборудования необходимо, прежде всего, оценить возможность образования в нем горючей среды. Под горючей средой понимается смесь горючего вещества с окислителем в таких соотношениях, при которых возможно возникновение и дальнейшее развитие горения.

Для оценки возможности образования горючей среды внутри технологического оборудования необходимо знать основные режимные параметры (рабочую температуру, давление, концентрацию), а для аппаратов с жидкостями необходимо также иметь сведения о наличии свободного объёма. Эта информация содержится в технологической документации.

Условия образования горючей среды в аппаратах с горючими газами, жидкостями, твердыми материалами и пылями несколько отличаются.

Аппараты с газами чаще всего заполняются чистыми горючими газами без примесей окислителя. Такие аппараты всегда находятся под избыточным давлением, поэтому поступление воздуха в них не­возможно, а следовательно, невозможно и образование горючей среды.

В редких случаях по условиям технологии в аппарат необходимо подавать смесь горючего газа с воздухом или кислородом (например, при получении водорода конверсией метана или при получении ацети­лена путем

Таблица 2.2 ― Анализ пожарной опасности аппаратов



термоокислительного пиролиза природного газа). В таких ситуациях возможность образования горючей среды оценивают путем сравнения рабочей концентрации j р с нижним и верхним концентраци­онными пределами распространения пламени. Горючая среда будет иметь место, если выполняется условие:

В закрытых аппаратах с жидкостями горючая среда может образоваться только в том случае, когда над поверхностью (зеркалом) жидкости имеется свободный объем. При этом любая жидкость, находящаяся в аппарате, будет испаряться, и ее пары постепенно распределятся в свободном пространстве. Если в свободном пространстве аппарата имеется воздух или любой другой окислитель, то пары жидкости, смешиваясь с ним, могут образовать горючую среду.

Наличие над зеркалом жидкости свободного пространства является необходимым, но не достаточным условием для образования горючей среды. Для того чтобы выяснить наличие в аппарате горючей паровоздушной смеси, необходимо, как и в случае с газами, проверить условие (2.3).

Однако при этом следует учитывать, что концентрация паров по высоте свободного пространства распределяется неравномерно. Над поверхностью жидкости она близка к концентрации насыщения, а у крыши аппарата её значения минимальны. Даже на одной и той же высоте в различные промежутки времени от начала испарения концентрация будет отличаться. Это обусловлено, прежде всего, особенностями протекания процесса диффузии паров в свободное пространство аппарата. То есть для технологического оборудования с горючими жидкостями характерно то, что в свободном пространстве может присутствовать лишь некоторая область концентраций, которая находится между нижним и верхним концентрационными пределами воспламенения. Высота расположения зоны опасных концентраций с течением времени изменяется. С методиками расчётного определения концентрации паров в свободном пространстве аппаратов с жидкостями можно ознакомиться в специальной литературе .

Для аппаратов с неподвижным уровнем жидкости (например, для аппаратов непрерывного действия) оценка возможности образования горючей среды может быть облегчена. Эксплуатация таких аппаратов характеризуется неизменными значениями рабочей концентрации при постоянной температуре и давлении в аппарате. Учитывая это, оценку возможности образования горючей среды можно провести путем сравнения рабочей температуры жидкости t р со значениями температурных пределов распространения пламени. Горючая среда в аппара­тах с неподвижным уровнем жидкости будет образовываться в том случае, если выполняется условие:

(2.4)

Условие (2.4) можно также использовать и для аппаратов с подвижным уровнем жидкости в период их заполнения после простоя. Это обусловлено тем, что при подъеме уровня жидкости в аппарате насыщенная концентрация паровоздушной смеси над зеркалом жидкости не изменяется. В случае же опорожнения таких аппаратов состояние насыщения свободного пространства парами жидкости нарушается за счет поступления дополнительного количества воздуха через дыхательную арматуру. При этом концентрация паров над зеркалом жидкости уменьшается и может стать опасной. Поэтому оценку возможности образо­вания горючей среды в период опорожнения аппаратов производят только по условию (2.3).

Итак, в общем случае возможность образования горючей среды в закрытых аппаратах с горючими и легковоспламеняющимися жидкостями может быть оценена путем:

1) проверки наличия над зеркалом жидкости свободного паровоздушного объема;

2) сравнения рабочей концентрации паров жидкости с концентрационными пределами воспламенения;

3) сравнения рабочей температуры жидкости в аппарате со значениями температурных пределов воспламенения.

В технологическом оборудовании с твердыми горючими веществами и материалами горючая среда может образоваться при тепловом воздействии на последние или в результате их саморазогрева. Как известно, сами твердые горючие вещества и материалы не способны образовывать в смеси с воздухом горючую среду. Однако в процессе их нагрева до некоторых температур может начаться процесс разложения с выделением летучих. Так, в процессе пиролиза древесины при температурах 150 – 275 о С происходит разложение менее термостойких ее компонентов с выделением окиси углерода, уксусной кислоты, метана, водорода и других веществ. Выделяющиеся продукты разложения в смеси с окислителем при определенных условиях могут образовывать горючую смесь. В таких случаях оценку возможности образования горючей среды в технологическом оборудовании производят, как и в случае газами, по условию (2.3).

Технологические аппараты с горючими пылями характеризуются значительной пожарной опасностью. При работе мельниц, дробилок, хлопковых разрыхлителей, центробежных классификаторов, систем пневмотранспорта образуется очень большое количество пыли. Пыли в таких аппаратах могут находиться во взвешенном в воздухе состоянии (аэрозоль) и в осевшем состоянии (аэрогель). В первом случае пожарная опасность пылей рассматривается как для газов и паров, во втором случае ─ как для твердых веществ и материалов.

Взвешенная в воздухе пыль может образовывать взрывоопасные концентрации. Для оценки возможности образования горючей среды внутри технологического оборудования с пылевидными материалами на практике используют значение нижнего концентрационного предела распространения пламени j н. Верхние концентрационные пределы для пылей настолько велики, что практического значения для оценки пожарной опасности не имеют. Кроме того, пылевоздушные смеси в большей степени, чем паро- и газовоздушные, склонны к расслоению. Поэтому в оборудовании даже при очень высоких концентрациях всегда могут образовываться локальные зоны с концентрацией ниже ВКПР.

При определении рабочей (фактической) концентрации пыли внутри технологического оборудования необходимо учитывать массу взвешенной и осевшей пыли. Горючая среда в аппаратах с пылями будет образовываться в том случае, если выполняется условие:

Взрывы и пожары внутри технологического оборудования часто возникают в периоды неустановившегося режима работы . К таким периодам относятся пуск аппаратов в эксплуатацию и их остановка для профилактического осмотра или ремонта. В эти периоды опасность образования горючей среды внутри технологического оборудования очень высока. Так период пуска оборудования характеризуется поступлением горючих компонентов в объем аппаратов, заполненных воздухом, и выходом аппаратов на заданный рабочий режим. При этом концентрация горючих веществ в аппаратах увеличивается и может стать горючей, если превысит значение НКПР.

Причинами образования горючей среды при остановке технологического оборудования являются:

· снижение температурного режима в аппаратах с рабочей температурой жидкости, превышающей значение ВТПР. При этом температура, снижаясь, войдет в температурную область воспламенения;

· поступление наружного воздуха через дыхательную арматуру при опорожнении аппаратов или через открытые люки при их разгерметизации;

· неполное удаление из аппаратов горючих веществ;

· негерметичное отключение аппаратов от трубопроводов с горючими веществами. При этом горючие вещества через неплотности будут попадать в аппарат, и образовывать в смеси с воздухом горючую смесь.

Все эти особенности необходимо учитывать при оценке возможности образования горючей среды внутри технологического оборудования и разработке пожарно-профилактических мероприятий.

После проведённого анализа возможности образования горючей среды внутри каждого технологического аппарата необходимо дать соответствующее заключение и сделать запись в графе 6 таблицы 2.2.

Образование горючей среды твердыми веществами органического происхождения.

Горючая среда образуется в тех случаях, когда в производственных условиях подвергаются обработке, применяются в технологическом процессе или хранятся твердые горючие вещества: древесина, уголь и волокнистые материалы. Указанные твердые вещества в смеси с воздухом образуют устойчивую горючую среду.

Как правило, они не изолируются от окружающего воздуха, могут гореть непосредственно в помещениях, машинах и аппаратах.

Образование горючей среды пылевидными материалами.

Горючие пыли образуются при обработке твердых материалов и веществ в процессе приготовления угольной пыли, крахмала при обработке хлопка, шерсти, древесины, при размоле зерна и др.

Необходимо отметить, что пыль может находиться во взвешенном состоянии в воздухе, а также в осажденном состоянии на конструкциях, машинах и оборудовании, но в обоих случаях она находится в воздушной среде. Особенность производств с горючими пылями состоит в том, что в смеси с воздухом они образуют горючую среду повышенной опасности.

Образование горючей среды парами легковоспламеняющихся и горючих жидкостей.

В производственных условиях подвергаются обработке и широко применяются легко-воспламеняющиеся и горючие жидкости. Для ускорения протекания технологических процессов создаются высокие температуры, давление или вакуум, что также должно учи-тываться при анализе опасности горючей среды в технологических процессах, установках и помещениях.

Образование горючей среды газами.

Газы обладают способностью проникать через незначительные неплотности. Поэтому их хранят в герметически закрытых сосудах и аппаратах, внутренний объем которых изолирован от окружающей среды. Горючие газы могут выходить из этих сосудов, аппаратов и приборов только при неисправностях, повреждениях, неумелом пользовании соответствующими приборами или при загрузке и выгрузке веществ и материалов из аппаратов.

Горючие газы, смешанные в определенных пропорциях с воздухом, образовывают взрывоопасные смеси.

Факультет Систем Защит и Безопасности

Кафедра Защита в Чрезвычайных ситуация

« Условия образования горючих сред»

Выполнил: ст.гр. 08-З3 Былинкин А

Проверил: Погодин Г

Горючая среда.

    Источник зажигания - открытый огонь, химическая реакция, электроток.

    Наличие окислителя, например, кислорода воздуха.

Горючая среда

Среда, способная самостоятельно гореть после удаления источника зажигания

Горючая среда

Среда, способная воспламеняться при воздействии источника зажигания;

Горючая среда – совокупность веществ, материалов, оборудования и конструкций, способных гореть.

Для горения необходимы горючее вещество, кислород (или иной окислитель) и источник вос­пламенения.

Чтобы возникло горение, горючее вещество должно быть на­грето до определенной температуры источником воспламенения (пламенем, искрой, накаленным телом) или тепловым прояв­лением какого-либо другого вида энергии: химической (экзо­термическая реакция), механической (удар, сжатие, трение) и т. д. Выделившиеся при нагревании горючего вещества пары и газы смешиваются с воздухом и окисляются, образуя горючую среду. По мере накопления тепла в результате окисления газов и паров скорость химической реакции увеличивается, вследствие чего происходит самовоспламенение горючей смеси и появля­ется пламя.

С появлением пламени наступает горение, которое при благоприятных условиях продолжается до полного сгорания ве­щества. В установившемся процессе горения постоянным источником воспламенения является зона горения, т. е. область, где про­текает химическая реакция, выделяется тепло и излучается свет.

Для возникновения и протекания горения горючее вещество н кислород должны находиться в определенном количественном соотношении. Содержание кислорода в воздухе для большинства горючих веществ должно быть не менее 14-18%.

Пожары или взрывы в зданиях и сооружениях могут возникать либо в результате взрыва технологического оборудования, находящегося в этих зданиях и сооружениях, либо в результате пожара или взрыва непосредственно в помещении, в котором используются горючие вещества и материалы.

Причинами образования взрывоопасной среды в технологическом оборудовании могут быть:

Некоторые технологические процессы в нормальном режиме (окисление органических жидкостей, окрасочные и сушильные камеры, пневмотранспортировка измельченных материалов и т.п.);

Подсос воздуха в аппараты, находящиеся под разряжением (вакуумные ректификационные колонны);

Мойка и очистка деталей в растворителях…

Причинами образования взрывоопасной среды непосредственно в помещении могут быть: выброс или утечка горючего газа, легковоспламеняющейся жидкости или горючей пыли из технологического оборудования в результате неисправности аппаратуры, потери прочности, неправильной деятельности персонала, внезапного отключения вентиляции и других причин.

Образование горючей среды

На промышленных, сельскохозяйственных и других предприятиях хранятся и перерабатываются разные по своим физико-химическим и пожаровзрывоопасным свойствам жидкие, твердые и газообразные вещества. Например, жидкости могут находиться и в герметично закрытых, и в открытых емкостях, а газы, в том числе и сжиженные, - только в герметично закрытых аппаратах. Упругость паров жидкости над ее зеркалом в аппарате приближается или равняется давлению насыщенных паров при данной температуре, в то время как концентрация газов в аппаратах от температурного режима не зависит.

Твердые вещества и материалы в большинстве случаев хранятся и перерабатываются открыто, то есть без специальных укрытий и изоляции. В этих случаях, когда вещества способны к самовозгоранию в воздухе или процесс их обработки сопровождается образованием пыли и продуктов разложения, обработку твердых веществ осуществляют без доступа воздуха или в закрытых аппаратах с местной системой улавливания пыли. При этом условия образования опасных концентраций в аппаратах с пылью несколько отличается от условий в аппаратах с жидкостями и газами.

Опасные концентрации горючих веществ и материалов в технологических процессах производства могут образовываться как при нормальной эксплуатации технологического оборудования, так и при его повреждениях и разрушениях.

При нормальной работе оборудования опасность представляет образование горючей среды (смесь горючего вещества с окислителем в определенном соотношении) в средине аппаратов с горючими веществами.

В соответствии с ГОСТ 12.1.044-89 в технологическом оборудовании и производственных помещениях с наличием горючих газов и жидкостей горючая среда образуется при выполнении следующего условия:

где - рабочая (действительная) концентрация газа или паров жидкости в аппарате, помещении,или 0% об;

Соответственно нижний и верхний концентрационные пределы распространения пламени,или 0% об (справочные данные).

Для технологического оборудования и производственных помещений с наличием горючей пыли условие пожаровзрывоопасности имеет следующий вид:

где - рабочая (действительная) концентрация пыли во взвешенном и осевшем состоянии в аппарате или в помещении,;

Нижний концентрационный предел распространения пламени, (справочные данные).

Таким образом, оценку возможности образования горючей среды в технологическом оборудовании можно произвести из выше приведенных условий, определив при этом действительную рабочую концентрацию горючих веществ в аппаратах или производственных помещениях.

Рабочая концентрация горючего газа в технологическом оборудовании определяется расчетом или экспериментально, а также исходя из данных технологического регламента. При этом необходимо учитывать, что нормальные работающие аппараты с газами чаще всего связаны с избыточным давлением, т.е. полностью заполнены, следовательно, рабочая концентрация газа в них составляет 100%.

В отличие от аппарата с газами, аппараты с горючими и легковоспламеняющимися жидкостями в целях безопасности никогда не заполняются полностью. Это связано со свойствами жидкостей испаряться в зависимости от температуры. В связи с этим аппараты, резервуары, емкости с горючими жидкостями над зеркалом жидкости имеют определенное свободное пространство, которое постепенно насыщается парами горючей жидкости при ее испарении. При наличии в этом пространстве воздуха пары жидкости смешиваются с ним и могут образовываться взрывоопасные смеси. При повышении температуры концентрация паров жидкости в свободном пространстве увеличивается и равномерно распределяется по высоте аппарата. При длительном хранении горючих жидкостей концентрация ее паров над зеркалом жидкости становится насыщенной, то есть

Оценить возможность образования горючей среды в аппаратах с горючими жидкостями можно из условия (1).

Концентрация насыщенных паров жидкости определяется величиной давления насыщенных парови рабочего давленияв объме паровоздушного пространства аппарата:

Давление насыщенных паров жидкости зависит от ее температуры и определяется по уравнению Антуана:

, (4)

где - давление насыщенных паров при рабочей температуре жидкости, Па;

Рабочая температура жидкости, ;

Константы Антуана, зависящие от свойств жидкости, справочные данные.

Таким образом, условиями образования горючей среды в технологическом оборудовании с горючими и легковоспламеняющимися жидкостями являются:

Наличие свободного пространства в аппарате;

Наличие окислителя;

В аппаратах с горючими газами горючая среда образуется, если выполняются следующие условия:

Наличие окислителя;

Выполнение условия пожаровзрывоопасности (1).

В технологическом оборудовании с горючими пылями пожаровзрывоопасной будет среда при:

Наличии окислителя;

Выполнении условия пожаровзрывоопасности (2).

Основными причинами образования горючей среды внутри и вне технологического оборудования есть: разгерметизация и разрушение аппаратов, нарушение безопасных режимов ведения технологических процессов, а также применение незавершенных технологических процессов (открытая обработка и транспортирование веществ и материалов и т.п.).

Пример: г. Сумгаит, ПО „Оргсинтез”, 1998 г. Во время слива сжиженного газа с шаровых емкостей - 600 куб.м - произошел взрыв. Взрывной волной был переброшен соседний резервуар. С пробитого осколками корпуса мощной струей било пламя. Еще 8 резервуаров были охвачены пламенем, горела сливо-наливная эстакада. Площадь пожара составляла 6000 кв.м. Непосредственной причиной взрыва и пожара стало нарушение технологии хранения бутадиена. От длительного хранения продукта на днище емкости образовался пласт перекисных соединений и началась неуправляемая реакция полимеризации с повышением температуры и давления, что и привело к взрыву.

Наибольшую опасность для производства представляют повреждения и аварии технологического оборудования, в результате которых значительное количество горючих веществ выходит наружу и приводит к опасным накоплениям горючих паров, пылей и газов в помещениях. Аварии при этом сопровождаются высокой загазованностью помещений, территорий, разливом жидкостей на большие площади.

Последствия повреждений или аварий будут зависеть от размеров аварии, а также от пожаровзрывоопасных свойств веществ, выходящих наружу из аппаратов, а также от их температуры и давления.